Back to Search Start Over

Robustness in experimental design: A study on the reliability of selection approaches.

Authors :
Brandmaier S
Tetko IV
Source :
Computational and structural biotechnology journal [Comput Struct Biotechnol J] 2013 Jun 30; Vol. 7, pp. e201305002. Date of Electronic Publication: 2013 Jun 30 (Print Publication: 2013).
Publication Year :
2013

Abstract

The quality criteria for experimental design approaches in chemoinformatics are numerous. Not only the error performance of a model resulting from the selected compounds is of importance, but also reliability, consistency, stability and robustness against small variations in the dataset or structurally diverse compounds. We developed a new stepwise, adaptive approach, DescRep, combining an iteratively refined descriptor selection with a sampling based on the putatively most representative compounds. A comparison of the proposed strategy was based on statistical performance of models derived from such a selection to those derived by other popular and frequently used approaches, such as the Kennard-Stone algorithm or the most descriptive compound selection. We used three datasets to carry out a statistical evaluation of the performance, reliability and robustness of the resulting models. Our results indicate that stepwise and adaptive approaches have a better adaptability to changes within a dataset and that this adaptability results in a better error performance and stability of the resulting models.

Details

Language :
English
ISSN :
2001-0370
Volume :
7
Database :
MEDLINE
Journal :
Computational and structural biotechnology journal
Publication Type :
Academic Journal
Accession number :
24688738
Full Text :
https://doi.org/10.5936/csbj.201305002