Back to Search
Start Over
Changes during leaf expansion of ΦPSII temperature optima in Gossypium hirsutum are associated with the degree of fatty acid lipid saturation.
- Source :
-
Journal of plant physiology [J Plant Physiol] 2014 Mar 15; Vol. 171 (6), pp. 411-20. Date of Electronic Publication: 2014 Feb 14. - Publication Year :
- 2014
-
Abstract
- In this project, we hypothesize that cotton (Gossypium hirsutum) leaf temperature and the responses of leaf photosynthesis to temperature will change as the leaves expand and that differences between young and mature leaves will be associated with the proportion of saturated fatty acids in thylakoid and other membrane lipids. To that end, we studied main stem leaves obtained from plants growing in a temperature controlled greenhouse and at different times in the field season. We found that young leaves (∼5d old) had higher mid day temperatures, lower stomatal conductance and higher thermal optima as measured by ΦPSII temperature curves than did more mature leaves (∼13d old). Young leaves also had significant differences in fatty acid saturation with the warmer, young leaves having a higher proportion of palmitic acid (16:0) and lower linoleic acid (18:3) in total lipid extracts and higher 16:0 and lower palmitoleic acid (16:1) in the chloroplast membrane phosphoglycerides, digalactosyldiacylglycerol (in the greenhouse) and phosphatidylglycerol when compared with cooler, more mature leaves. Later in the growing season, leaf temperature, stomatal conductance and ΦPSII temperature curves for young and more mature leaves were similar and the proportion of 16:0 fatty acids decreased and 16:1 increased in phosphatidylglycerol. We conclude that changes in temperature as cotton leaves expand leads to alterations in the fatty acid composition of thylakoid and other membranes and, consequently, influence photosynthesis/temperature responses.<br /> (Copyright © 2013 Elsevier GmbH. All rights reserved.)
- Subjects :
- Chlorophyll metabolism
Chloroplasts metabolism
Circadian Rhythm
Fatty Acids isolation & purification
Fluorescence
Gossypium radiation effects
Light
Linoleic Acid isolation & purification
Linoleic Acid metabolism
Palmitic Acid isolation & purification
Palmitic Acid metabolism
Plant Leaves physiology
Plant Leaves radiation effects
Plant Stomata physiology
Plant Stomata radiation effects
Plant Transpiration
Rain
Seasons
Temperature
Acclimatization physiology
Fatty Acids metabolism
Gossypium physiology
Photosynthesis physiology
Photosystem II Protein Complex physiology
Subjects
Details
- Language :
- English
- ISSN :
- 1618-1328
- Volume :
- 171
- Issue :
- 6
- Database :
- MEDLINE
- Journal :
- Journal of plant physiology
- Publication Type :
- Academic Journal
- Accession number :
- 24594393
- Full Text :
- https://doi.org/10.1016/j.jplph.2013.12.005