Back to Search
Start Over
Glibenclamide decreases ATP-induced intracellular calcium transient elevation via inhibiting reactive oxygen species and mitochondrial activity in macrophages.
- Source :
-
PloS one [PLoS One] 2014 Feb 18; Vol. 9 (2), pp. e89083. Date of Electronic Publication: 2014 Feb 18 (Print Publication: 2014). - Publication Year :
- 2014
-
Abstract
- Increasing evidence has revealed that glibenclamide has a wide range of anti-inflammatory effects. However, it is unclear whether glibenclamide can affect the resting and adenosine triphosphate (ATP)-induced intracellular calcium ([Ca(2+)]i) handling in Raw 264.7 macrophages. In the present study, [Ca(2+)]i transient, reactive oxygen species (ROS) and mitochondrial activity were measured by the high-speed TILLvisION digital imaging system using the indicators of Fura 2-am, DCFDA and rhodamine-123, respectively. We found that glibenclamide, pinacidil and other unselective K(+) channel blockers had no effect on the resting [Ca(2+)]i of Raw 264.7 cells. Extracellular ATP (100 µM) induced [Ca(2+)]i transient elevation independent of extracellular Ca(2+). The transient elevation was inhibited by an ROS scavenger (tiron) and mitochondria inhibitor (rotenone). Glibenclamide and 5-hydroxydecanoate (5-HD) also decreased ATP-induced [Ca(2+)]i transient elevation, but pinacidil and other unselective K(+) channel blockers had no effect. Glibenclamide also decreased the peak of [Ca(2+)]i transient induced by extracellular thapsigargin (Tg, 1 µM). Furthermore, glibenclamide decreased intracellular ROS and mitochondrial activity. When pretreated with tiron and rotenone, glibenclamide could not decrease ATP, and Tg induced maximal [Ca(2+)]i transient further. We conclude that glibenclamide may inhibit ATP-induced [Ca(2+)]i transient elevation by blocking mitochondria KATP channels, resulting in decreased ROS generation and mitochondrial activity in Raw 264.7 macrophages.
- Subjects :
- Adenosine Triphosphate metabolism
Analysis of Variance
Animals
Cell Line
Fluoresceins
Fluorescence
Fura-2 analogs & derivatives
Membrane Potential, Mitochondrial physiology
Mice
Mitochondria drug effects
Pinacidil
Rhodamine 123
Rotenone
Calcium metabolism
Glyburide pharmacology
Macrophages drug effects
Mitochondria physiology
Potassium Channels metabolism
Reactive Oxygen Species antagonists & inhibitors
Subjects
Details
- Language :
- English
- ISSN :
- 1932-6203
- Volume :
- 9
- Issue :
- 2
- Database :
- MEDLINE
- Journal :
- PloS one
- Publication Type :
- Academic Journal
- Accession number :
- 24558474
- Full Text :
- https://doi.org/10.1371/journal.pone.0089083