Back to Search Start Over

Heme versus non-heme iron-nitroxyl {FeN(H)O}⁸ complexes: electronic structure and biologically relevant reactivity.

Authors :
Speelman AL
Lehnert N
Source :
Accounts of chemical research [Acc Chem Res] 2014 Apr 15; Vol. 47 (4), pp. 1106-16. Date of Electronic Publication: 2014 Feb 20.
Publication Year :
2014

Abstract

Researchers have completed extensive studies on heme and non-heme iron-nitrosyl complexes, which are labeled {FeNO}(7) in the Enemark-Feltham notation, but they have had very limited success in producing corresponding, one-electron reduced, {FeNO}(8) complexes where a nitroxyl anion (NO(-)) is formally bound to an iron(II) center. These complexes, and their protonated iron(II)-NHO analogues, are proposed key intermediates in nitrite (NO2(-)) and nitric oxide (NO) reducing enzymes in bacteria and fungi. In addition, HNO is known to have a variety of physiological effects, most notably in the cardiovascular system. HNO may also serve as a signaling molecule in mammals. For these functions, iron-containing proteins may mediate the production of HNO and serve as receptors for HNO in vivo. In this Account, we highlight recent key advances in the preparation, spectroscopic characterization, and reactivity of ferrous heme and non-heme nitroxyl (NO(-)/HNO) complexes that have greatly enhanced our understanding of the potential biological roles of these species. Low-spin (ls) heme {FeNO}(7) complexes (S = 1/2) can be reversibly reduced to the corresponding {FeNO}(8) species, which are stable, diamagnetic compounds. Because the reduction is ligand (NO) centered in these cases, it occurs at extremely negative redox potentials that are at the edge of the biologically feasible range. Interestingly, the electronic structures of ls-{FeNO}(7) and ls-{FeNO}(8) species are strongly correlated with very similar frontier molecular orbitals (FMOs) and thermodynamically strong Fe-NO bonds. In contrast, high-spin (hs) non-heme {FeNO}(7) complexes (S = 3/2) can be reduced at relatively mild redox potentials. Here, the reduction is metal-centered and leads to a paramagnetic (S = 1) {FeNO}(8) complex. The increased electron density at the iron center in these species significantly decreases the covalency of the Fe-NO bond, making the reduced complexes highly reactive. In the absence of steric bulk, monomeric high-spin {FeNO}(8) complexes decompose rapidly. Notably, in a recently prepared, dimeric [{FeNO}(7)]2 species, we observed that reduction leads to rapid N-N bond formation and N2O generation, which directly models the reactivity of flavodiiron NO reductases (FNORs). We have also made key progress in the preparation and stabilization of corresponding HNO complexes, {FeNHO}(8), using both heme and non-heme ligand sets. In both cases, we have taken advantage of sterically bulky coligands to stabilize these species. ls-{FeNO}(8) complexes are basic and easily form corresponding ls-{FeNHO}(8) species, which, however, decompose rapidly via disproportionation and H2 release. Importantly, we recently showed that we can suppress this reaction via steric protection of the bound HNO ligand. As a result, we have demonstrated that ls-{FeNHO}(8) model complexes are stable and amenable to spectroscopic characterization. Neither ls-{FeNO}(8) nor ls-{FeNHO}(8) model complexes are active for N-N coupling, and hence, seem unsuitable as reactive intermediates in nitric oxide reductases (NORs). Hs-{FeNO}(8) complexes are more basic than their hs-{FeNO}(7) precursors, but their electronic structure and reactivity is not as well characterized.

Details

Language :
English
ISSN :
1520-4898
Volume :
47
Issue :
4
Database :
MEDLINE
Journal :
Accounts of chemical research
Publication Type :
Academic Journal
Accession number :
24555413
Full Text :
https://doi.org/10.1021/ar400256u