Back to Search Start Over

Synthetic amphiphilic peptide models for protein ion channels.

Authors :
Lear JD
Wasserman ZR
DeGrado WF
Source :
Science (New York, N.Y.) [Science] 1988 May 27; Vol. 240 (4856), pp. 1177-81.
Publication Year :
1988

Abstract

Ion channel proteins are important for the conduction of ions across biological membranes. Recent analyses of their sequences have suggested that they are composed of bundles of alpha-helices that associate to form ion-conducting channels. To gain insight into the mechanisms by which alpha-helices can aggregate and conduct ions, three model peptides containing only leucine and serine residues were synthesized and characterized. A 21-residue peptide, H2N-(Leu-Ser-Ser-Leu-Leu-Ser-Leu)3-CONH2, which was designed to be a membrane-spanning amphiphilic alpha-helix, formed well-defined ion channels with ion permeability and lifetime characteristics resembling the acetylcholine receptor. In contrast, a 14-residue version of this peptide, which was too short to span the phospolipid bilayer as an alpha-helix, failed to form discrete, stable channels. A third peptide, H2N-(Leu-Ser-Leu-Leu-Leu-Ser-Leu)3-CONH2, in which one serine per heptad repeat was replaced by leucine, produced proton-selective channels. Computer graphics and energy minimization were used to create molecular models that were consistent with the observed properties of the channels.

Details

Language :
English
ISSN :
0036-8075
Volume :
240
Issue :
4856
Database :
MEDLINE
Journal :
Science (New York, N.Y.)
Publication Type :
Academic Journal
Accession number :
2453923
Full Text :
https://doi.org/10.1126/science.2453923