Back to Search
Start Over
Label-free quantitative phosphoproteomic analysis reveals differentially regulated proteins and pathway in PRRSV-infected pulmonary alveolar macrophages.
- Source :
-
Journal of proteome research [J Proteome Res] 2014 Mar 07; Vol. 13 (3), pp. 1270-80. Date of Electronic Publication: 2014 Feb 24. - Publication Year :
- 2014
-
Abstract
- Porcine reproductive and respiratory syndrome virus (PRRSV) is an important pathogen of swine worldwide and causes significant economic losses. Through regulating the host proteins phosphorylation, PRRSV was found to manipulate the activities of several signaling molecules to regulate innate immune responses. However, the role of protein phosphorylation during PRRSV infection and the signal pathways responsible for it are relatively unknown. Here liquid chromatography-tandem mass spectrometry for label-free quantitative phosphoproteomics was applied to systematically investigate the global phosphorylation events in PRRSV-infected pulmonary alveolar macrophages. In total, we identified 2125 unique phosphosites, of which the phosphorylation level of 292 phosphosites on 242 proteins and 373 phosphosites on 249 proteins was significantly altered at 12 and 36 h pi, respectively. The phosphoproteomics data were analyzed using ingenuity pathways analysis to identify defined canonical pathways and functional networks. Pathway analysis revealed that PRRSV-induced inflammatory cytokines production was probably due to the activation of mitogen-activated protein kinase and NF-κB signal pathway, which were regulated by several protein kinases during virus infection. Interacting network analysis indicated that altered phosphoproteins were involved in cellular assembly and organization, protein synthesis, molecular transport, and signal transduction in PRRSV infected cells. These pathways and functional networks analysis could provide direct insights into the biological significance of phosphorylation events modulated by PRRSV and may help us elucidate the pathogenic mechanisms of PRRSV infection.
- Subjects :
- Animals
Cytokines analysis
Cytokines genetics
Cytokines metabolism
Host-Pathogen Interactions
Macrophages, Alveolar metabolism
Macrophages, Alveolar virology
Mitogen-Activated Protein Kinases analysis
Mitogen-Activated Protein Kinases genetics
Mitogen-Activated Protein Kinases metabolism
Molecular Sequence Annotation
NF-kappa B analysis
NF-kappa B genetics
NF-kappa B metabolism
Phosphoproteins genetics
Phosphoproteins metabolism
Phosphorylation
Porcine respiratory and reproductive syndrome virus physiology
Protein Interaction Mapping
Proteomics methods
Signal Transduction
Swine
Gene Expression Regulation
Gene Regulatory Networks
Macrophages, Alveolar chemistry
Phosphoproteins analysis
Subjects
Details
- Language :
- English
- ISSN :
- 1535-3907
- Volume :
- 13
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- Journal of proteome research
- Publication Type :
- Academic Journal
- Accession number :
- 24533505
- Full Text :
- https://doi.org/10.1021/pr400852d