Back to Search Start Over

Tet and TDG mediate DNA demethylation essential for mesenchymal-to-epithelial transition in somatic cell reprogramming.

Authors :
Hu X
Zhang L
Mao SQ
Li Z
Chen J
Zhang RR
Wu HP
Gao J
Guo F
Liu W
Xu GF
Dai HQ
Shi YG
Li X
Hu B
Tang F
Pei D
Xu GL
Source :
Cell stem cell [Cell Stem Cell] 2014 Apr 03; Vol. 14 (4), pp. 512-22. Date of Electronic Publication: 2014 Feb 13.
Publication Year :
2014

Abstract

Tet-mediated DNA oxidation is a recently identified mammalian epigenetic modification, and its functional role in cell-fate transitions remains poorly understood. Here, we derive mouse embryonic fibroblasts (MEFs) deleted in all three Tet genes and examine their capacity for reprogramming into induced pluripotent stem cells (iPSCs). We show that Tet-deficient MEFs cannot be reprogrammed because of a block in the mesenchymal-to-epithelial transition (MET) step. Reprogramming of MEFs deficient in TDG is similarly impaired. The block in reprogramming is caused at least in part by defective activation of key miRNAs, which depends on oxidative demethylation promoted by Tet and TDG. Reintroduction of either the affected miRNAs or catalytically active Tet and TDG restores reprogramming in the knockout MEFs. Thus, oxidative demethylation to promote gene activation appears to be functionally required for reprogramming of fibroblasts to pluripotency. These findings provide mechanistic insight into the role of epigenetic barriers in cell-lineage conversion.<br /> (Copyright © 2014 Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1875-9777
Volume :
14
Issue :
4
Database :
MEDLINE
Journal :
Cell stem cell
Publication Type :
Academic Journal
Accession number :
24529596
Full Text :
https://doi.org/10.1016/j.stem.2014.01.001