Back to Search Start Over

Structural basis for DNA binding specificity by the auxin-dependent ARF transcription factors.

Authors :
Boer DR
Freire-Rios A
van den Berg WA
Saaki T
Manfield IW
Kepinski S
López-Vidrieo I
Franco-Zorrilla JM
de Vries SC
Solano R
Weijers D
Coll M
Source :
Cell [Cell] 2014 Jan 30; Vol. 156 (3), pp. 577-89.
Publication Year :
2014

Abstract

Auxin regulates numerous plant developmental processes by controlling gene expression via a family of functionally distinct DNA-binding auxin response factors (ARFs), yet the mechanistic basis for generating specificity in auxin response is unknown. Here, we address this question by solving high-resolution crystal structures of the pivotal Arabidopsis developmental regulator ARF5/MONOPTEROS (MP), its divergent paralog ARF1, and a complex of ARF1 and a generic auxin response DNA element (AuxRE). We show that ARF DNA-binding domains also homodimerize to generate cooperative DNA binding, which is critical for in vivo ARF5/MP function. Strikingly, DNA-contacting residues are conserved between ARFs, and we discover that monomers have the same intrinsic specificity. ARF1 and ARF5 homodimers, however, differ in spacing tolerated between binding sites. Our data identify the DNA-binding domain as an ARF dimerization domain, suggest that ARF dimers bind complex sites as molecular calipers with ARF-specific spacing preference, and provide an atomic-scale mechanistic model for specificity in auxin response.<br /> (Copyright © 2014 Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1097-4172
Volume :
156
Issue :
3
Database :
MEDLINE
Journal :
Cell
Publication Type :
Academic Journal
Accession number :
24485461
Full Text :
https://doi.org/10.1016/j.cell.2013.12.027