Back to Search Start Over

Regulation of amyloid precursor protein processing by serotonin signaling.

Authors :
Pimenova AA
Thathiah A
De Strooper B
Tesseur I
Source :
PloS one [PLoS One] 2014 Jan 21; Vol. 9 (1), pp. e87014. Date of Electronic Publication: 2014 Jan 21 (Print Publication: 2014).
Publication Year :
2014

Abstract

Proteolytic processing of the amyloid precursor protein (APP) by the β- and γ-secretases releases the amyloid-β peptide (Aβ), which deposits in senile plaques and contributes to the etiology of Alzheimer's disease (AD). The α-secretase cleaves APP in the Aβ peptide sequence to generate soluble APPα (sAPPα). Upregulation of α-secretase activity through the 5-hydroxytryptamine 4 (5-HT4) receptor has been shown to reduce Aβ production, amyloid plaque load and to improve cognitive impairment in transgenic mouse models of AD. Consequently, activation of 5-HT4 receptors following agonist stimulation is considered to be a therapeutic strategy for AD treatment; however, the signaling cascade involved in 5-HT4 receptor-stimulated proteolysis of APP remains to be determined. Here we used chemical and siRNA inhibition to identify the proteins which mediate 5-HT4d receptor-stimulated α-secretase activity in the SH-SY5Y human neuronal cell line. We show that G protein and Src dependent activation of phospholipase C are required for α-secretase activity, while, unexpectedly, adenylyl cyclase and cAMP are not involved. Further elucidation of the signaling pathway indicates that inositol triphosphate phosphorylation and casein kinase 2 activation is also a prerequisite for α-secretase activity. Our findings provide a novel route to explore the treatment of AD through 5-HT4 receptor-induced α-secretase activation.

Details

Language :
English
ISSN :
1932-6203
Volume :
9
Issue :
1
Database :
MEDLINE
Journal :
PloS one
Publication Type :
Academic Journal
Accession number :
24466315
Full Text :
https://doi.org/10.1371/journal.pone.0087014