Back to Search
Start Over
Targeting VEGFR1 on endothelial progenitors modulates their differentiation potential.
- Source :
-
Angiogenesis [Angiogenesis] 2014 Jul; Vol. 17 (3), pp. 603-16. Date of Electronic Publication: 2014 Jan 14. - Publication Year :
- 2014
-
Abstract
- Objectives: We studied whether plasma levels of angiogenic factors VEGF and placental growth factor (PlGF) in coronary artery disease patients or undergoing cardiac surgery are modified, and whether those factors modulate endothelial progenitor's angiogenic potential.<br />Methods and Results: A total of 143 patients' plasmas from two different studies were analyzed (30 coronary artery disease patients, 30 patients with stable angina, coupled with 30 age and sex-matched controls; 53 patients underwent cardiac surgery). Among factors screened, only PlGF was found significantly increased in these pathological populations. PlGF-1 and PlGF-2 were then tested on human endothelial-colony-forming cells (ECFCs). We found that PlGF-1 and PlGF-2 induce VEGFR1 phosphorylation and potentiate ECFCs tubulogenesis in vitro. ECFCs VEGFR1 was further inhibited using a specific small interfering RNA (siRNA) and the chemical compound 4321. We then observed that the VEGFR1-siRNA and the compound 4321 decrease ECFCs tubulogenesis potential in vitro. Finally, we tested the compound 4321 in the preclinical Matrigel(®)-plug model with C57Bl/6J mice as well as in the murine hindlimb ischemia model. We found that 4321 inhibited the plug vascularization, attested by the hemoglobin content and the VE-Cadherin expression level and that 4321 inhibited the post-ischemic revascularization.<br />Conclusion: PlGF plasma levels were found increased in cardiovascular patients. Disrupting PlGF/VEGFR1 pathway could modulate ECFC-induced tubulogenesis, the cell type responsible for newly formed vessels in vivo.
- Subjects :
- Animals
Cardiac Surgical Procedures
Cell Migration Assays
Cell Proliferation drug effects
Collagen metabolism
Colony-Forming Units Assay
Coronary Artery Disease blood
Coronary Artery Disease pathology
Drug Combinations
Endothelial Cells drug effects
Hindlimb blood supply
Hindlimb pathology
Humans
Ischemia pathology
Laminin metabolism
Membrane Proteins blood
Mice, Inbred C57BL
Neovascularization, Physiologic drug effects
Phosphorylation drug effects
Proteoglycans metabolism
RNA, Small Interfering metabolism
Recombinant Proteins pharmacology
Stem Cells drug effects
Vascular Endothelial Growth Factor A blood
Cell Differentiation drug effects
Endothelial Cells metabolism
Stem Cells metabolism
Vascular Endothelial Growth Factor Receptor-1 metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1573-7209
- Volume :
- 17
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- Angiogenesis
- Publication Type :
- Academic Journal
- Accession number :
- 24419917
- Full Text :
- https://doi.org/10.1007/s10456-013-9413-2