Back to Search Start Over

The polyphenol quercetin protects the mev-1 mutant of Caenorhabditis elegans from glucose-induced reduction of survival under heat-stress depending on SIR-2.1, DAF-12, and proteasomal activity.

Authors :
Fitzenberger E
Deusing DJ
Marx C
Boll M
Lüersen K
Wenzel U
Source :
Molecular nutrition & food research [Mol Nutr Food Res] 2014 May; Vol. 58 (5), pp. 984-94. Date of Electronic Publication: 2014 Jan 10.
Publication Year :
2014

Abstract

Scope: Hyperglycemia is a hallmark of diabetes mellitus but slighter increases of blood glucose levels are observed also during ageing. Using the Caenorhabditis elegans mev-1 mutant, we identified molecular mechanisms underlying the protection from glucose toxicity by the polyphenol quercetin.<br />Methods and Results: We fed C. elegans mev-1 mutants on a liquid medium supplemented with 10 mM glucose, which resulted in a reduced survival at 37°C. The polyphenol quercetin (1 μM) was able to prevent glucose-induced lifespan reduction completely. RNA interference revealed that the sirtuin SIR-2.1, the nuclear hormone receptor DAF-12, and its putative co-activator MDT-15 were critical for the quercetin effects. Moreover, RNA interference for key factors of proteostasis reduced survival, which was not further affected by glucose or quercetin, suggesting that those proteins are a target for both substances. Besides unfolded protein response, proper functionality of the proteasome was shown to be crucial for the survival enhancing effects of quercetin and the polyphenol was finally demonstrated to activate proteasomal degradation.<br />Conclusion: Our studies demonstrate that lowest concentrations of quercetin prevent a glucose-induced reduction of survival. SIR-2.1, DAF-12, and MDT-15 were identified as targets that activate unfolded protein response and proteasomal degradation to limit the accumulation of functionally restricted proteins.<br /> (© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)

Details

Language :
English
ISSN :
1613-4133
Volume :
58
Issue :
5
Database :
MEDLINE
Journal :
Molecular nutrition & food research
Publication Type :
Academic Journal
Accession number :
24407905
Full Text :
https://doi.org/10.1002/mnfr.201300718