Back to Search Start Over

Cytokines alter IgA1 O-glycosylation by dysregulating C1GalT1 and ST6GalNAc-II enzymes.

Authors :
Suzuki H
Raska M
Yamada K
Moldoveanu Z
Julian BA
Wyatt RJ
Tomino Y
Gharavi AG
Novak J
Source :
The Journal of biological chemistry [J Biol Chem] 2014 Feb 21; Vol. 289 (8), pp. 5330-9. Date of Electronic Publication: 2014 Jan 07.
Publication Year :
2014

Abstract

IgA nephropathy (IgAN), the most common primary glomerulonephritis, is characterized by renal immunodeposits containing IgA1 with galactose-deficient O-glycans (Gd-IgA1). These immunodeposits originate from circulating immune complexes consisting of anti-glycan antibodies bound to Gd-IgA1. As clinical disease onset and activity of IgAN often coincide with mucosal infections and dysregulation of cytokines, we hypothesized that cytokines may affect IgA1 O-glycosylation. We used IgA1-secreting cells derived from the circulation of IgAN patients and healthy controls and assessed whether IgA1 O-glycosylation is altered by cytokines. Of the eight cytokines tested, only IL-6 and, to a lesser degree, IL-4 significantly increased galactose deficiency of IgA1; changes in IgA1 O-glycosylation were robust for the cells from IgAN patients. These cytokines reduced galactosylation of the O-glycan substrate directly via decreased expression of the galactosyltransferase C1GalT1 and, indirectly, via increased expression of the sialyltransferase ST6GalNAc-II, which prevents galactosylation by C1GalT1. These findings were confirmed by siRNA knockdown of the corresponding genes and by in vitro enzyme reactions. In summary, IL-6 and IL-4 accentuated galactose deficiency of IgA1 via coordinated modulation of key glycosyltransferases. These data provide a mechanism explaining increased immune-complex formation and disease exacerbation during mucosal infections in IgAN patients.

Details

Language :
English
ISSN :
1083-351X
Volume :
289
Issue :
8
Database :
MEDLINE
Journal :
The Journal of biological chemistry
Publication Type :
Academic Journal
Accession number :
24398680
Full Text :
https://doi.org/10.1074/jbc.M113.512277