Back to Search
Start Over
Cell type-specific genetic and optogenetic tools reveal hippocampal CA2 circuits.
- Source :
-
Nature neuroscience [Nat Neurosci] 2014 Feb; Vol. 17 (2), pp. 269-79. Date of Electronic Publication: 2013 Dec 15. - Publication Year :
- 2014
-
Abstract
- The formation and recall of episodic memory requires precise information processing by the entorhinal-hippocampal network. For several decades, the trisynaptic circuit entorhinal cortex layer II (ECII)→dentate gyrus→CA3→CA1 and the monosynaptic circuit ECIII→CA1 have been considered the primary substrates of the network responsible for learning and memory. Circuits linked to another hippocampal region, CA2, have only recently come to light. Using highly cell type-specific transgenic mouse lines, optogenetics and patch-clamp recordings, we found that dentate gyrus cells, long believed to not project to CA2, send functional monosynaptic inputs to CA2 pyramidal cells through abundant longitudinal projections. CA2 innervated CA1 to complete an alternate trisynaptic circuit, but, unlike CA3, projected preferentially to the deep, rather than to the superficial, sublayer of CA1. Furthermore, contrary to existing knowledge, ECIII did not project to CA2. Our results allow a deeper understanding of the biology of learning and memory.
- Subjects :
- Animals
Entorhinal Cortex cytology
Luminescent Proteins genetics
Luminescent Proteins metabolism
Membrane Potentials genetics
Membrane Proteins genetics
Membrane Proteins metabolism
Mice
Mice, Transgenic
Nerve Fibers physiology
Nerve Tissue Proteins genetics
Nerve Tissue Proteins metabolism
Patch-Clamp Techniques
Photic Stimulation
RGS Proteins genetics
RGS Proteins metabolism
CA2 Region, Hippocampal cytology
Nerve Net physiology
Neural Pathways physiology
Neurons cytology
Neurons metabolism
Optogenetics
Subjects
Details
- Language :
- English
- ISSN :
- 1546-1726
- Volume :
- 17
- Issue :
- 2
- Database :
- MEDLINE
- Journal :
- Nature neuroscience
- Publication Type :
- Academic Journal
- Accession number :
- 24336151
- Full Text :
- https://doi.org/10.1038/nn.3614