Back to Search Start Over

Human omental-derived adipose stem cells increase ovarian cancer proliferation, migration, and chemoresistance.

Authors :
Nowicka A
Marini FC
Solley TN
Elizondo PB
Zhang Y
Sharp HJ
Broaddus R
Kolonin M
Mok SC
Thompson MS
Woodward WA
Lu K
Salimian B
Nagrath D
Klopp AH
Source :
PloS one [PLoS One] 2013 Dec 02; Vol. 8 (12), pp. e81859. Date of Electronic Publication: 2013 Dec 02 (Print Publication: 2013).
Publication Year :
2013

Abstract

Objectives: Adipose tissue contains a population of multipotent adipose stem cells (ASCs) that form tumor stroma and can promote tumor progression. Given the high rate of ovarian cancer metastasis to the omental adipose, we hypothesized that omental-derived ASC may contribute to ovarian cancer growth and dissemination.<br />Materials and Methods: We isolated ASCs from the omentum of three patients with ovarian cancer, with (O-ASC4, O-ASC5) and without (O-ASC1) omental metastasis. BM-MSCs, SQ-ASCs, O-ASCs were characterized with gene expression arrays and metabolic analysis. Stromal cells effects on ovarian cancer cells proliferation, chemoresistance and radiation resistance was evaluated using co-culture assays with luciferase-labeled human ovarian cancer cell lines. Transwell migration assays were performed with conditioned media from O-ASCs and control cell lines. SKOV3 cells were intraperitionally injected with or without O-ASC1 to track in-vivo engraftment.<br />Results: O-ASCs significantly promoted in vitro proliferation, migration chemotherapy and radiation response of ovarian cancer cell lines. O-ASC4 had more marked effects on migration and chemotherapy response on OVCA 429 and OVCA 433 cells than O-ASC1. Analysis of microarray data revealed that O-ASC4 and O-ASC5 have similar gene expression profiles, in contrast to O-ASC1, which was more similar to BM-MSCs and subcutaneous ASCs in hierarchical clustering. Human O-ASCs were detected in the stroma of human ovarian cancer murine xenografts but not uninvolved ovaries.<br />Conclusions: ASCs derived from the human omentum can promote ovarian cancer proliferation, migration, chemoresistance and radiation resistance in-vitro. Furthermore, clinical O-ASCs isolates demonstrate heterogenous effects on ovarian cancer in-vitro.

Details

Language :
English
ISSN :
1932-6203
Volume :
8
Issue :
12
Database :
MEDLINE
Journal :
PloS one
Publication Type :
Academic Journal
Accession number :
24312594
Full Text :
https://doi.org/10.1371/journal.pone.0081859