Back to Search
Start Over
SAMS, a syndrome of short stature, auditory-canal atresia, mandibular hypoplasia, and skeletal abnormalities is a unique neurocristopathy caused by mutations in Goosecoid.
- Source :
-
American journal of human genetics [Am J Hum Genet] 2013 Dec 05; Vol. 93 (6), pp. 1135-42. Date of Electronic Publication: 2013 Nov 27. - Publication Year :
- 2013
-
Abstract
- Short stature, auditory canal atresia, mandibular hypoplasia, and skeletal abnormalities (SAMS) has been reported previously to be a rare, autosomal-recessive developmental disorder with other, unique rhizomelic skeletal anomalies. These include bilateral humeral hypoplasia, humeroscapular synostosis, pelvic abnormalities, and proximal defects of the femora. To identify the genetic basis of SAMS, we used molecular karyotyping and whole-exome sequencing (WES) to study small, unrelated families. Filtering of variants from the WES data included segregation analysis followed by comparison of in-house exomes. We identified a homozygous 306 kb microdeletion and homozygous predicted null mutations of GSC, encoding Goosecoid homeobox protein, a paired-like homeodomain transcription factor. This confirms that SAMS is a human malformation syndrome resulting from GSC mutations. Previously, Goosecoid has been shown to be a determinant at the Xenopus gastrula organizer region and a segment-polarity determinant in Drosophila. In the present report, we present data on Goosecoid protein localization in staged mouse embryos. These data and the SAMS clinical phenotype both suggest that Goosecoid is a downstream effector of the regulatory networks that define neural-crest cell-fate specification and subsequent mesoderm cell lineages in mammals, particularly during shoulder and hip formation. Our findings confirm that Goosecoid has an essential role in human craniofacial and joint development and suggest that Goosecoid is an essential regulator of mesodermal patterning in mammals and that it has specific functions in neural crest cell derivatives.<br /> (Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.)
- Subjects :
- Abnormalities, Multiple diagnosis
Adult
Animals
Child
DNA Mutational Analysis
Female
Genetic Association Studies
Homozygote
Humans
Male
Mice
Pedigree
Phenotype
Syndrome
Young Adult
Abnormalities, Multiple genetics
Bone and Bones abnormalities
Dwarfism genetics
Ear Canal abnormalities
Goosecoid Protein genetics
Mandible abnormalities
Mutation
Subjects
Details
- Language :
- English
- ISSN :
- 1537-6605
- Volume :
- 93
- Issue :
- 6
- Database :
- MEDLINE
- Journal :
- American journal of human genetics
- Publication Type :
- Academic Journal
- Accession number :
- 24290375
- Full Text :
- https://doi.org/10.1016/j.ajhg.2013.10.027