Back to Search Start Over

Contactless, photoinitiated snap-through in azobenzene-functionalized polymers.

Authors :
Shankar MR
Smith ML
Tondiglia VP
Lee KM
McConney ME
Wang DH
Tan LS
White TJ
Source :
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2013 Nov 19; Vol. 110 (47), pp. 18792-7. Date of Electronic Publication: 2013 Nov 04.
Publication Year :
2013

Abstract

Photomechanical effects in polymeric materials and composites transduce light into mechanical work. The ability to control the intensity, polarization, placement, and duration of light irradiation is a distinctive and potentially useful tool to tailor the location, magnitude, and directionality of photogenerated mechanical work. Unfortunately, the work generated from photoresponsive materials is often slow and yields very small power densities, which diminish their potential use in applications. Here, we investigate photoinitiated snap-through in bistable arches formed from samples composed of azobenzene-functionalized polymers (both amorphous polyimides and liquid crystal polymer networks) and report orders-of-magnitude enhancement in actuation rates (approaching 10(2) mm/s) and powers (as much as 1 kW/m(3)). The contactless, ultra-fast actuation is observed at irradiation intensities <<100 mW/cm(2). Due to the bistability and symmetry of the snap-through, reversible and bidirectional actuation is demonstrated. A model is developed to elucidate the underlying mechanics of the snap-through, specifically focusing on isolating the role of sample geometry, mechanical properties of the materials, and photomechanical strain. Using light to trigger contactless, ultrafast actuation in an otherwise passive structure is a potentially versatile tool to use in mechanical design at the micro-, meso-, and millimeter scales as actuators, as well as switches that can be triggered from large standoff distances, impulse generators for microvehicles, microfluidic valves and mixers in laboratory-on-chip devices, and adaptive optical elements.

Details

Language :
English
ISSN :
1091-6490
Volume :
110
Issue :
47
Database :
MEDLINE
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
24190994
Full Text :
https://doi.org/10.1073/pnas.1313195110