Back to Search
Start Over
Inhibition of type 1 17β-hydroxysteroid dehydrogenase impairs the synthesis of 17β-estradiol in endometriosis lesions.
- Source :
-
The Journal of clinical endocrinology and metabolism [J Clin Endocrinol Metab] 2014 Jan; Vol. 99 (1), pp. 276-84. Date of Electronic Publication: 2013 Dec 20. - Publication Year :
- 2014
-
Abstract
- Context: Endometriosis affects 10% of the women before menopause and has important personal, professional, and societal economic burdens. Because current medical treatments are aimed at reducing the symptoms only, novel therapeutic targets should be identified. Endometriosis is estrogen dependent and in some patients the endometriosis tissue is able to produce estrogens in an autocrine/paracrine manner. In a number of patients, this is the consequence of the high local activity of the 17β-hydroxysteroid-dehydrogenases (17β-HSDs), enzymes able to generate active estrogens from precursors with low activity.<br />Objective: The objective of the study was to identify the 17β-HSD(s) responsible for the high local generation of estrogens in endometriosis and test the possibility to inhibit these enzymes for therapeutic purposes.<br />Design: The expression of different 17β-HSDs involved in the estrogen metabolism was assessed by real-time PCR in eutopic and ectopic tissue from endometriosis patients (n=14). These biopsies had previously confirmed unbalanced local 17β-HSD activity, which caused high estrogen generation. The possibility to block the synthesis of estrogens by one inhibitor specific for type 1 17β-HSD was assessed by HPLC in tissue lysates from endometriosis tissues (n=27).<br />Results: In all but one of the patients, a high type 1 17β-HSD level is associated with the unbalanced metabolism of estrogens, leading to higher estrogen synthesis in endometriosis than in the endometrium inside the uterus. Inhibition of type 1 17β-HSD restores to various extents, depending on the patient, the correct metabolism. In 19 of 27 patients analyzed (70%), the 17β-HSD type 1 inhibitor decreased the generation of 17β-estradiol by greater than 85%.<br />Conclusions: Inhibition of 17β-HSD type 1 can be a potential future treatment option aimed at restoring the correct metabolic balance of estrogens in endometriosis patients with increased local 17β-HSD type 1 enzyme activity.
- Subjects :
- 17-Hydroxysteroid Dehydrogenases genetics
17-Hydroxysteroid Dehydrogenases metabolism
Cells, Cultured
Endometriosis pathology
Endometrium drug effects
Endometrium metabolism
Endometrium pathology
Enzyme Inhibitors pharmacology
Female
Humans
Intestinal Diseases metabolism
Intestinal Diseases pathology
Ovarian Diseases metabolism
Ovarian Diseases pathology
Peritoneal Diseases metabolism
Peritoneal Diseases pathology
RNA, Messenger metabolism
17-Hydroxysteroid Dehydrogenases antagonists & inhibitors
Endometriosis metabolism
Estradiol biosynthesis
Subjects
Details
- Language :
- English
- ISSN :
- 1945-7197
- Volume :
- 99
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- The Journal of clinical endocrinology and metabolism
- Publication Type :
- Academic Journal
- Accession number :
- 24187399
- Full Text :
- https://doi.org/10.1210/jc.2013-2851