Back to Search
Start Over
B-type natriuretic peptide inhibits angiotensin II-induced proliferation and migration of pulmonary arterial smooth muscle cells.
- Source :
-
Pediatric pulmonology [Pediatr Pulmonol] 2014 Aug; Vol. 49 (8), pp. 734-44. Date of Electronic Publication: 2013 Oct 25. - Publication Year :
- 2014
-
Abstract
- Pulmonary vascular remodeling, characterized by disordered proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), is a pathognomonic feature of pulmonary arterial hypertension. Thus, pharmacologic strategy targeting on anti-proliferation and anti-migration of PASMCs may have therapeutic implications for PAH. Here we investigated the effects and underlying mechanisms of B-type natriuretic peptide (BNP) on angiotensin II (Ang II)-induced proliferation and migration of PASMCs. Proliferation and migration of PASMCs cultured from Wistar rats were induced by Ang II, with or without BNP treatment. In addition, potential underlying mechanisms including cell cycle progression, Ca(2+) overload, reactive oxygen species (ROS) production, signal transduction of MAPK and Akt, and the cGMP/PKG pathway were examined. We found that BNP inhibited Ang II-induced PASMCs proliferation and migration dose dependently. BNP could also arrest the cell cycle progression in the G0/G1-phase. In addition, BNP attenuated intracellular calcium overload caused by Ang II. Moreover, Ang II-induced ROS production was mitigated by BNP, with associated down-regulation of NAD(P)H oxidase 1 (Nox1) and reduced mitochondrial ROS production. Finally, Ang II-activated MAPKs and Akt were also counteracted by BNP. Of note, all these effects of BNP were abolished by a PKG inhibitor (Rp-8-Br-PET-cGMPS). In conclusion, BNP inhibits Ang II-induced PASMCs proliferation and migration. These effects are potentially mediated by decreased calcium influx, reduced ROS production by Nox1 and mitochondria, and down-regulation of MAPK and Akt signal transduction, through the cGMP/PKG pathway. Therefore, this study implicates that BNP may have a therapeutic role in pulmonary vascular remodeling.<br /> (© 2013 Wiley Periodicals, Inc.)
- Subjects :
- Angiotensin II pharmacology
Animals
Calcium metabolism
Cells, Cultured
Down-Regulation
MAP Kinase Signaling System drug effects
Mitochondria drug effects
Muscle, Smooth, Vascular drug effects
NADH, NADPH Oxidoreductases drug effects
NADH, NADPH Oxidoreductases metabolism
NADPH Oxidase 1
Proto-Oncogene Proteins c-akt drug effects
Proto-Oncogene Proteins c-akt metabolism
Pulmonary Artery drug effects
Rats
Rats, Wistar
Reactive Oxygen Species
Vasoconstrictor Agents pharmacology
Cell Movement drug effects
Cell Proliferation drug effects
Muscle, Smooth, Vascular cytology
Myocytes, Smooth Muscle drug effects
Natriuretic Agents pharmacology
Natriuretic Peptide, Brain pharmacology
Pulmonary Artery cytology
Subjects
Details
- Language :
- English
- ISSN :
- 1099-0496
- Volume :
- 49
- Issue :
- 8
- Database :
- MEDLINE
- Journal :
- Pediatric pulmonology
- Publication Type :
- Academic Journal
- Accession number :
- 24167111
- Full Text :
- https://doi.org/10.1002/ppul.22904