Back to Search
Start Over
Mice heterozygous for the xanthine oxidoreductase gene facilitate lipid accumulation in adipocytes.
- Source :
-
Arteriosclerosis, thrombosis, and vascular biology [Arterioscler Thromb Vasc Biol] 2014 Jan; Vol. 34 (1), pp. 44-51. Date of Electronic Publication: 2013 Oct 24. - Publication Year :
- 2014
-
Abstract
- Objective: Xanthine oxidoreductase (XOR) catalyzes the production of uric acid with concomitant generation of reactive oxygen species. XOR has been shown to regulate adipogenesis through the control of peroxisome proliferator-activated receptor γ, but its role in adipose tissue remains unclear. The aim of this study was to examine the role of XOR in adipose tissue using XOR genetically modified mice.<br />Approach and Results: Experiments were performed using 2-, 4-, and 18-month-old XOR heterozygous mice (XOR(+/-)) and their wild-type littermates to evaluate the physiological role of XOR as the mice aged. Stromal vascular fraction cells were prepared from epididymal white adipose tissue in 2-month-old XOR mice to assess adipogenesis. At 18 months, XOR(+/)- mice had significantly higher body weight, higher systolic blood pressure, and higher incidence of insulin resistance compared with wild-type mice. At 4 months, blood glucose and the expressions of CCAAT enhancer-binding protein β, peroxisome proliferator-activated receptor γ, monocyte chemoattractant protein-1, and tumor necrosis factor α mRNA in epididymal white adipose tissue were significantly higher in XOR(+/-) than in wild-type mice. Furthermore, histological analysis of epididymal white adipose tissue in XOR(+/-) mice revealed that adipocyte size and the F4/80-positive macrophage count were increased. Experiments with a high-fat diet exhibited that body weight gain was also significantly higher in XOR(+/-) than in wild-type mice. In stromal vascular fraction cells derived from XOR(+/-) mice, the levels of peroxisome proliferator-activated receptor γ, fatty acid-binding protein 4, and CCAAT enhancer-binding protein α mRNA were upregulated, and oxidative stress levels were elevated during differentiation into adipocytes.<br />Conclusions: These results suggest that the reduction in XOR gene expression in mice augments lipid accumulation in adipocytes, accompanied by an increase in oxidative stress, and induces obesity with insulin resistance in older age.
- Subjects :
- Adipocytes pathology
Adipose Tissue, White pathology
Age Factors
Animals
Blood Glucose metabolism
Blood Pressure
CCAAT-Enhancer-Binding Protein-beta genetics
CCAAT-Enhancer-Binding Protein-beta metabolism
Cells, Cultured
Chemokine CCL2 genetics
Chemokine CCL2 metabolism
Diet, High-Fat
Disease Models, Animal
Insulin Resistance
Male
Mice
Mice, Knockout
Obesity genetics
Obesity pathology
Obesity physiopathology
Oxidative Stress
PPAR gamma genetics
PPAR gamma metabolism
RNA, Messenger metabolism
Time Factors
Tumor Necrosis Factor-alpha genetics
Tumor Necrosis Factor-alpha metabolism
Weight Gain
Xanthine Dehydrogenase genetics
Adipocytes enzymology
Adipogenesis
Adipose Tissue, White enzymology
Heterozygote
Lipid Metabolism
Obesity enzymology
Xanthine Dehydrogenase deficiency
Subjects
Details
- Language :
- English
- ISSN :
- 1524-4636
- Volume :
- 34
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Arteriosclerosis, thrombosis, and vascular biology
- Publication Type :
- Academic Journal
- Accession number :
- 24158515
- Full Text :
- https://doi.org/10.1161/ATVBAHA.113.302214