Back to Search Start Over

Plasmodium falciparum phosphoethanolamine methyltransferase is essential for malaria transmission.

Authors :
Bobenchik AM
Witola WH
Augagneur Y
Nic Lochlainn L
Garg A
Pachikara N
Choi JY
Zhao YO
Usmani-Brown S
Lee A
Adjalley SH
Samanta S
Fidock DA
Voelker DR
Fikrig E
Ben Mamoun C
Source :
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2013 Nov 05; Vol. 110 (45), pp. 18262-7. Date of Electronic Publication: 2013 Oct 21.
Publication Year :
2013

Abstract

Efficient transmission of Plasmodium species between humans and Anopheles mosquitoes is a major contributor to the global burden of malaria. Gametocytogenesis, the process by which parasites switch from asexual replication within human erythrocytes to produce male and female gametocytes, is a critical step in malaria transmission and Plasmodium genetic diversity. Nothing is known about the pathways that regulate gametocytogenesis and only few of the current drugs that inhibit asexual replication are also capable of inhibiting gametocyte development and blocking malaria transmission. Here we provide genetic and pharmacological evidence indicating that the pathway for synthesis of phosphatidylcholine in Plasmodium falciparum membranes from host serine is essential for parasite gametocytogenesis and malaria transmission. Parasites lacking the phosphoethanolamine N-methyltransferase enzyme, which catalyzes the limiting step in this pathway, are severely altered in gametocyte development, are incapable of producing mature-stage gametocytes, and are not transmitted to mosquitoes. Chemical screening identified 11 inhibitors of phosphoethanolamine N-methyltransferase that block parasite intraerythrocytic asexual replication and gametocyte differentiation in the low micromolar range. Kinetic studies in vitro as well as functional complementation assays and lipid metabolic analyses in vivo on the most promising inhibitor NSC-158011 further demonstrated the specificity of inhibition. These studies set the stage for further optimization of NSC-158011 for development of a class of dual activity antimalarials to block both intraerythrocytic asexual replication and gametocytogenesis.

Details

Language :
English
ISSN :
1091-6490
Volume :
110
Issue :
45
Database :
MEDLINE
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
24145416
Full Text :
https://doi.org/10.1073/pnas.1313965110