Back to Search
Start Over
A plasma-treated chalcogenide switch device for stackable scalable 3D nanoscale memory.
- Source :
-
Nature communications [Nat Commun] 2013; Vol. 4, pp. 2629. - Publication Year :
- 2013
-
Abstract
- Stackable select devices such as the oxide p-n junction diode and the Schottky diode (one-way switch) have been proposed for non-volatile unipolar resistive switching devices; however, bidirectional select devices (or two-way switch) need to be developed for bipolar resistive switching devices. Here we report on a fully stackable switching device that solves several problems including current density, temperature stability, cycling endurance and cycle distribution. We demonstrate that the threshold switching device based on As-Ge-Te-Si material significantly improves cycling endurance performance by reactive nitrogen deposition and nitrogen plasma hardening. Formation of the thin Si₃N₄ glass layer by the plasma treatment retards tellurium diffusion during cycling. Scalability of threshold switching devices is measured down to 30 nm scale with extremely fast switching speed of ~2 ns.
Details
- Language :
- English
- ISSN :
- 2041-1723
- Volume :
- 4
- Database :
- MEDLINE
- Journal :
- Nature communications
- Publication Type :
- Academic Journal
- Accession number :
- 24129660
- Full Text :
- https://doi.org/10.1038/ncomms3629