Back to Search Start Over

Automatic control system of brain temperature by air-surface cooling for therapeutic hypothermia.

Authors :
Utsuki T
Source :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference [Annu Int Conf IEEE Eng Med Biol Soc] 2013; Vol. 2013, pp. 3741-4.
Publication Year :
2013

Abstract

An automatic control system of brain temperature by air-surface cooling was developed for therapeutic hypothermia, which is increasingly recommended for hypoxic-ischemic encephalopathy after cardiac arrest and neonatal asphyxia in several guidelines pertinent to resuscitation. Currently, water-surface cooling is the most widespread cooling method in therapeutic hypothermia. However, it requires large electric power for precise control and also needs water-cooling blankets which have potential for compression of patients by its own weight and for water leakage in ICU. Air-surface cooling does not have such problems and is more suitable for clinical use than water-surface cooling, because air has lower specific heat and density as well as the impossibility of the contamination in ICU by its leakage. In the present system, brain temperature of patients is automatically controlled by suitable adjustment of the temperature of the air blowing into the cooling blankets. This adjustment is carried out by the regulation of mixing cool and warm air using proportional control valves. The computer in the developed control apparatus suitably calculates the air temperature and rotation angle of the valves every sampling time on the basis of the optimal-adaptive control algorithm. Thus, the proposed system actualizes automatic control of brain temperature by the inputting only the clinically desired temperature of brain. The control performance of the suggested system was verified by the examination using the mannequin in substitution for an adult patient. In the result, the control error of the head temperature of the mannequin was 0.12 °C on average in spite of the lack of the production capacity of warm air after the re-warming period. Thus, this system serves as a model for the clinically applied system.

Details

Language :
English
ISSN :
2694-0604
Volume :
2013
Database :
MEDLINE
Journal :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Publication Type :
Academic Journal
Accession number :
24110544
Full Text :
https://doi.org/10.1109/EMBC.2013.6610357