Back to Search Start Over

Gremlin-1 is an inhibitor of macrophage migration inhibitory factor and attenuates atherosclerotic plaque growth in ApoE-/- Mice.

Authors :
Müller I
Schönberger T
Schneider M
Borst O
Ziegler M
Seizer P
Leder C
Müller K
Lang M
Appenzeller F
Lunov O
Büchele B
Fahrleitner M
Olbrich M
Langer H
Geisler T
Lang F
Chatterjee M
de Boer JF
Tietge UJ
Bernhagen J
Simmet T
Gawaz M
Source :
The Journal of biological chemistry [J Biol Chem] 2013 Nov 01; Vol. 288 (44), pp. 31635-45. Date of Electronic Publication: 2013 Sep 03.
Publication Year :
2013

Abstract

Monocyte infiltration and macrophage formation are pivotal steps in atherosclerosis and plaque vulnerability. Gremlin-1/Drm is crucial in embryo-/organogenesis and has been shown to be expressed in the adult organism at sites of arterial injury and to inhibit monocyte migration. The purpose of the present study was to evaluate and characterize the role of Gremlin-1 in atherosclerosis. Here we report that Gremlin-1 is highly expressed primarily by monocytes/macrophages in aortic atherosclerotic lesions of ApoE(-/-) mice and is secreted from activated monocytes and during macrophage development in vitro. Gremlin-1 reduces macrophage formation by inhibiting macrophage migration inhibitory factor (MIF), a cytokine critically involved in atherosclerotic plaque progression and vulnerability. Gremlin-1 binds with high affinity to MIF (KD = 54 nm), as evidenced by surface plasmon resonance analysis and co-immunoprecipitation, and reduces MIF-induced release of TNF-α from macrophages. Treatment of ApoE(-/-) mice with a dimeric recombinant fusion protein, mGremlin1-Fc, but not with equimolar control Fc or inactivated mGremlin1-Fc, reduced TNF-α expression, the content of monocytes/macrophages of atherosclerotic lesions, and attenuated atheroprogression. The present data disclose that Gremlin-1 is an endogenous antagonist of MIF and define a role for Gremlin-1/MIF interaction in atherosclerosis.

Details

Language :
English
ISSN :
1083-351X
Volume :
288
Issue :
44
Database :
MEDLINE
Journal :
The Journal of biological chemistry
Publication Type :
Academic Journal
Accession number :
24003215
Full Text :
https://doi.org/10.1074/jbc.M113.477745