Back to Search Start Over

AMG 900, a small-molecule inhibitor of aurora kinases, potentiates the activity of microtubule-targeting agents in human metastatic breast cancer models.

Authors :
Bush TL
Payton M
Heller S
Chung G
Hanestad K
Rottman JB
Loberg R
Friberg G
Kendall RL
Saffran D
Radinsky R
Source :
Molecular cancer therapeutics [Mol Cancer Ther] 2013 Nov; Vol. 12 (11), pp. 2356-66. Date of Electronic Publication: 2013 Aug 29.
Publication Year :
2013

Abstract

Breast cancer is the most prevalent malignancy affecting women and ranks second in cancer-related deaths, in which death occurs primarily from metastatic disease. Triple-negative breast cancer (TNBC) is a more aggressive and metastatic subtype of breast cancer that is initially responsive to treatment of microtubule-targeting agents (MTA) such as taxanes. Recently, we reported the characterization of AMG 900, an orally bioavailable, potent, and highly selective pan-Aurora kinase inhibitor that is active in multidrug-resistant cell lines. In this report, we investigate the activity of AMG 900 alone and in combination with two distinct classes of MTAs (taxanes and epothilones) in multidrug-resistant TNBC cell lines and xenografts. In TNBC cells, AMG 900 inhibited phosphorylation of histone H3 on Ser(10), a proximal substrate of Aurora-B, and induced polyploidy and apoptosis. Furthermore, AMG 900 potentiated the antiproliferative effects of paclitaxel and ixabepilone at low nanomolar concentrations. In mice, AMG 900 significantly inhibited the growth of MDA-MB-231 (F(11); parental), MDA-MB-231 (F(11)) PTX-r (paclitaxel-resistant variant), and DU4475 xenografts. The combination of AMG 900 with docetaxel enhanced tumor inhibition in MDA-MB-231 (F(11)) xenografts compared with either monotherapy. Notably, combining AMG 900 with ixabepilone resulted in regressions of MDA-MB-231 (F(11)) PTX-r xenografts, in which more than 50% of the tumors failed to regrow 75 days after the cessation of drug treatment. These findings suggest that AMG 900, alone and in combination with MTAs, may be an effective intervention strategy for the treatment of metastatic breast cancer and provide potential therapeutic options for patients with multidrug-resistant tumors.<br /> (©2013 AACR.)

Details

Language :
English
ISSN :
1538-8514
Volume :
12
Issue :
11
Database :
MEDLINE
Journal :
Molecular cancer therapeutics
Publication Type :
Academic Journal
Accession number :
23990115
Full Text :
https://doi.org/10.1158/1535-7163.MCT-12-1178