Back to Search Start Over

Reversible redox reactions in an epitaxially stabilized SrCoO(x) oxygen sponge.

Authors :
Jeen H
Choi WS
Biegalski MD
Folkman CM
Tung IC
Fong DD
Freeland JW
Shin D
Ohta H
Chisholm MF
Lee HN
Source :
Nature materials [Nat Mater] 2013 Nov; Vol. 12 (11), pp. 1057-63. Date of Electronic Publication: 2013 Aug 25.
Publication Year :
2013

Abstract

Fast, reversible redox reactions in solids at low temperatures without thermomechanical degradation are a promising strategy for enhancing the overall performance and lifetime of many energy materials and devices. However, the robust nature of the cation's oxidation state and the high thermodynamic barrier have hindered the realization of fast catalysis and bulk diffusion at low temperatures. Here, we report a significant lowering of the redox temperature by epitaxial stabilization of strontium cobaltites (SrCoO(x)) grown directly as one of two distinct crystalline phases, either the perovskite SrCoO(3-δ) or the brownmillerite SrCoO(2.5). Importantly, these two phases can be reversibly switched at a remarkably reduced temperature (200-300 °C) in a considerably short time (< 1 min) without destroying the parent framework. The fast, low-temperature redox activity in SrCoO(3-δ) is attributed to a small Gibbs free-energy difference between two topotatic phases. Our findings thus provide useful information for developing highly sensitive electrochemical sensors and low-temperature cathode materials.

Details

Language :
English
ISSN :
1476-4660
Volume :
12
Issue :
11
Database :
MEDLINE
Journal :
Nature materials
Publication Type :
Academic Journal
Accession number :
23975056
Full Text :
https://doi.org/10.1038/nmat3736