Back to Search
Start Over
Ridaifen-SB8, a novel tamoxifen derivative, induces apoptosis via reactive oxygen species-dependent signaling pathway.
Ridaifen-SB8, a novel tamoxifen derivative, induces apoptosis via reactive oxygen species-dependent signaling pathway.
- Source :
-
Biochemical pharmacology [Biochem Pharmacol] 2013 Nov 01; Vol. 86 (9), pp. 1272-84. Date of Electronic Publication: 2013 Aug 22. - Publication Year :
- 2013
-
Abstract
- Tamoxifen is an anticancer agent widely used for treatment of estrogen receptor (ERα)-positive breast cancer. We previously developed a novel synthesis of tamoxifen and its derivatives, named Ridaifens (RIDs). Some of them, including RID-SB8, exhibited a stronger anticancer activity than tamoxifen in ERα-positive MCF-7 cells while having lost the affinity for ERα, suggesting an ERα-independent anticancer mode of action. In this study, we investigated the underlying mechanism by which RID-SB8 exerts anticancer activity. As expected, anticancer activity of RID-SB8 was not influenced upon knockdown of ERα expression in MCF-7 cells. RID-SB8 exerted similar anticancer effects on thirteen ERα-negative cancer cell lines including human gliosarcoma SF539 cells. In SF539 cells, RID-SB8 triggered loss of mitochondrial membrane potential (ΔΨ(m)) and progression of apoptosis accompanied by activation of caspases and translocation of apoptosis-inducing factor (AIF) to the nucleus. Furthermore, it induced reactive oxygen species (ROS), and a ROS scavenger, N-acetylcysteine (NAC), canceled loss of ΔΨ(m) and progression of apoptosis triggered by RID-SB8. Using fifteen human cancer cell lines, we demonstrated a significant correlation between RID-SB8 concentration required for ROS production and that required for cytotoxic effect across these cell lines, but such correlation was not observed for tamoxifen. Finally, the selective induction of ROS and cytotoxic effect on cancer cells by RID-SB8 were confirmed. From these results, we concluded that RID-SB8 exerts an anticancer effect via a mode of action distinct from tamoxifen, and that RID-SB8 could become a promising anticancer lead compound which selectively induces ROS formation and apoptosis in cancer cells.<br /> (Copyright © 2013 Elsevier Inc. All rights reserved.)
- Subjects :
- Acetylcysteine pharmacology
Antineoplastic Agents chemical synthesis
Apoptosis Inducing Factor genetics
Apoptosis Inducing Factor metabolism
Caspases metabolism
Cell Line, Tumor drug effects
Estrogen Receptor alpha genetics
Estrogen Receptor alpha metabolism
Free Radical Scavengers pharmacology
Gene Knockdown Techniques
Gliosarcoma drug therapy
Gliosarcoma genetics
Gliosarcoma metabolism
Gliosarcoma pathology
Humans
MCF-7 Cells drug effects
Membrane Potential, Mitochondrial drug effects
Protein Transport drug effects
Signal Transduction drug effects
Tamoxifen pharmacology
Antineoplastic Agents pharmacology
Apoptosis drug effects
Reactive Oxygen Species metabolism
Tamoxifen analogs & derivatives
Subjects
Details
- Language :
- English
- ISSN :
- 1873-2968
- Volume :
- 86
- Issue :
- 9
- Database :
- MEDLINE
- Journal :
- Biochemical pharmacology
- Publication Type :
- Academic Journal
- Accession number :
- 23973528
- Full Text :
- https://doi.org/10.1016/j.bcp.2013.08.020