Back to Search Start Over

The self-assembled Ru(bpy)3(PF6)2 nanoparticle on polystyrene microfibers and its application for ECL sensing.

Authors :
Luo J
Zhou C
Shi Y
Zhang L
Xiao D
Source :
The Analyst [Analyst] 2013 Oct 21; Vol. 138 (20), pp. 6171-6. Date of Electronic Publication: 2013 Aug 22.
Publication Year :
2013

Abstract

Ruthenium nanoparticle tris(2,2'-bipyridyl)ruthenium(II) bis(hexafluorophosphate) (Ru(bpy)3(PF6)2, RuNP) was self-assembled on polystyrene (PS) electrospun microfibers. The formation of RuNP is attributed to the sulfonated PS (SPS) microfibers' high adsorptive capability of 94% for Ru(bpy)3(2+), as well as the strong interaction between the Ru(bpy)3(2+) and ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate, BMIMPF6). The RuNP/SPS microfibers exhibited an enhanced electrochemiluminescence (ECL) emission, 2.3 times higher than that from Ru(bpy)3(2+)/SPS microfibers and 6.6 times higher than that from Ru(bpy)3(2+)/SPS continuous thin films. It is worthy of note that, as a result of the hydrophobic nature of the RuNP, the transfer of water-insoluble α-naphthol is accelerated, and thus the α-naphthol ECL quenching efficiency is enhanced. An ECL sensor based on the RuNP/SPS microfibers was fabricated and used to detect low concentrations of α-naphthol. The detection limit was of 1.0 nM (S/N > 3), and the linear response ranged from 0 to 18 μM. This sensor has been successfully applied to measure the α-naphthol content in pesticide carbaryl samples. Our work provides a very simple and cost-effective method to fabricate RuNP on polymer microfibers with great potential in the field of chemo/biosensors.

Details

Language :
English
ISSN :
1364-5528
Volume :
138
Issue :
20
Database :
MEDLINE
Journal :
The Analyst
Publication Type :
Academic Journal
Accession number :
23971074
Full Text :
https://doi.org/10.1039/c3an00947e