Back to Search Start Over

Element-resolved corrosion analysis of stainless-type glass-forming steels.

Authors :
Duarte MJ
Klemm J
Klemm SO
Mayrhofer KJ
Stratmann M
Borodin S
Romero AH
Madinehei M
Crespo D
Serrano J
Gerstl SS
Choi PP
Raabe D
Renner FU
Source :
Science (New York, N.Y.) [Science] 2013 Jul 26; Vol. 341 (6144), pp. 372-6.
Publication Year :
2013

Abstract

Ultrathin passive films effectively prevent the chemical attack of stainless steel grades in corrosive environments; their stability depends on the interplay between structure and chemistry of the constituents iron, chromium, and molybdenum (Fe-Cr-Mo). Carbon (C), and eventually boron (B), are also important constituents of steels, although in small quantities. In particular, nanoscale inhomogeneities along the surface can have an impact on material failure but are still poorly understood. Addressing a stainless-type glass-forming Fe50Cr15Mo14C15B6 alloy and using a combination of complementary high-resolution analytical techniques, we relate near-atomistic insights into increasingly inhomogeneous nanostructures with time- and element-resolved dissolution behavior. The progressive elemental partitioning on the nanoscale determines the degree of passivation. A detrimental transition from Cr-controlled passivity to Mo-controlled breakdown is dissected atom by atom, demonstrating the importance of nanoscale knowledge for understanding corrosion.

Details

Language :
English
ISSN :
1095-9203
Volume :
341
Issue :
6144
Database :
MEDLINE
Journal :
Science (New York, N.Y.)
Publication Type :
Academic Journal
Accession number :
23888035
Full Text :
https://doi.org/10.1126/science.1230081