Back to Search Start Over

Deep-sea bioluminescence blooms after dense water formation at the ocean surface.

Authors :
Tamburini C
Canals M
Durrieu de Madron X
Houpert L
Lefèvre D
Martini S
D'Ortenzio F
Robert A
Testor P
Aguilar JA
Samarai IA
Albert A
André M
Anghinolfi M
Anton G
Anvar S
Ardid M
Jesus AC
Astraatmadja TL
Aubert JJ
Baret B
Basa S
Bertin V
Biagi S
Bigi A
Bigongiari C
Bogazzi C
Bou-Cabo M
Bouhou B
Bouwhuis MC
Brunner J
Busto J
Camarena F
Capone A
Cârloganu C
Carminati G
Carr J
Cecchini S
Charif Z
Charvis P
Chiarusi T
Circella M
Coniglione R
Costantini H
Coyle P
Curtil C
Decowski P
Dekeyser I
Deschamps A
Donzaud C
Dornic D
Dorosti HQ
Drouhin D
Eberl T
Emanuele U
Ernenwein JP
Escoffier S
Fermani P
Ferri M
Flaminio V
Folger F
Fritsch U
Fuda JL
Galatà S
Gay P
Giacomelli G
Giordano V
Gómez-González JP
Graf K
Guillard G
Halladjian G
Hallewell G
van Haren H
Hartman J
Heijboer AJ
Hello Y
Hernández-Rey JJ
Herold B
Hößl J
Hsu CC
de Jong M
Kadler M
Kalekin O
Kappes A
Katz U
Kavatsyuk O
Kooijman P
Kopper C
Kouchner A
Kreykenbohm I
Kulikovskiy V
Lahmann R
Lamare P
Larosa G
Lattuada D
Lim G
Presti DL
Loehner H
Loucatos S
Mangano S
Marcelin M
Margiotta A
Martinez-Mora JA
Meli A
Montaruli T
Moscoso L
Motz H
Neff M
Nezri EN
Palioselitis D
Păvălaş GE
Payet K
Payre P
Petrovic J
Piattelli P
Picot-Clemente N
Popa V
Pradier T
Presani E
Racca C
Reed C
Riccobene G
Richardt C
Richter R
Rivière C
Roensch K
Rostovtsev A
Ruiz-Rivas J
Rujoiu M
Russo VG
Salesa F
Sánchez-Losa A
Sapienza P
Schöck F
Schuller JP
Schussler F
Shanidze R
Simeone F
Spies A
Spurio M
Steijger JJ
Stolarczyk T
Taiuti MG
Toscano S
Vallage B
Van Elewyck V
Vannoni G
Vecchi M
Vernin P
Wijnker G
Wilms J
de Wolf E
Yepes H
Zaborov D
De Dios Zornoza J
Zúñiga J
Source :
PloS one [PLoS One] 2013 Jul 10; Vol. 8 (7), pp. e67523. Date of Electronic Publication: 2013 Jul 10 (Print Publication: 2013).
Publication Year :
2013

Abstract

The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.

Details

Language :
English
ISSN :
1932-6203
Volume :
8
Issue :
7
Database :
MEDLINE
Journal :
PloS one
Publication Type :
Academic Journal
Accession number :
23874425
Full Text :
https://doi.org/10.1371/journal.pone.0067523