Back to Search
Start Over
Duress without stress: Cryptobia infection results in HPI axis dysfunction in rainbow trout.
- Source :
-
The Journal of endocrinology [J Endocrinol] 2013 Jul 29; Vol. 218 (3), pp. 287-97. Date of Electronic Publication: 2013 Jul 29 (Print Publication: 2013). - Publication Year :
- 2013
-
Abstract
- Despite clear physiological duress, rainbow trout (Oncorhynchus mykiss) infected with the pathogenic haemoflagellate Cryptobia salmositica do not appear to mount a cortisol stress response. Therefore, we hypothesized that the infection suppresses the stress response by inhibiting the key effectors of the hypothalamic-pituitary-interrenal (HPI) axis. To test this, we characterized the basal activity of the HPI axis and the cortisol response to air exposure in saline- and parasite-injected fish. All fish were sampled at 4 and 6 weeks post-injection (wpi). While both the treatment groups had resting plasma cortisol levels, the parasite-infected fish had lower levels of plasma ACTH than the control fish. Relative to the control fish, the infected fish had higher mRNA levels of brain pre-optic area corticotrophin-releasing factor (CRF) and pituitary CRF receptor type 1, no change in pituitary POMC-A1, -A2 and -B gene expression, higher and lower head kidney melanocortin 2 receptor mRNA levels at 4 and 6 wpi respectively and reduced gene expression of key proteins regulating interrenal steroidogenesis: StAR, cytochrome P450scc and 11β-hydroxylase. The parasite-infected fish also had a reduced plasma cortisol response to a 60-s air exposure stressor. Superfusion of the head kidney tissues of the parasite-infected fish led to significantly lower ACTH-stimulated cortisol release rates than that observed in the control fish. These novel findings show that infection of rainbow trout with C. salmositica results in complex changes in the transcriptional activity of both central and peripheral regulators of the HPI axis and in a reduction in the interrenal capacity to synthesize cortisol.
- Subjects :
- Adrenocorticotropic Hormone metabolism
Animals
Corticotropin-Releasing Hormone metabolism
Euglenozoa Infections genetics
Euglenozoa Infections metabolism
Euglenozoa Infections parasitology
Fish Diseases genetics
Fish Diseases parasitology
Fish Proteins genetics
Fish Proteins metabolism
Head Kidney metabolism
Hydrocortisone metabolism
Oncorhynchus mykiss genetics
Oncorhynchus mykiss metabolism
Receptor, Melanocortin, Type 2 genetics
Receptor, Melanocortin, Type 2 metabolism
Stress, Physiological
Euglenozoa Infections veterinary
Fish Diseases metabolism
Hypothalamo-Hypophyseal System metabolism
Interrenal Gland metabolism
Kinetoplastida physiology
Oncorhynchus mykiss parasitology
Subjects
Details
- Language :
- English
- ISSN :
- 1479-6805
- Volume :
- 218
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- The Journal of endocrinology
- Publication Type :
- Academic Journal
- Accession number :
- 23814015
- Full Text :
- https://doi.org/10.1530/JOE-13-0155