Back to Search Start Over

Circumferential or sectored beam arrangements for stereotactic body radiation therapy (SBRT) of primary lung tumors: effect on target and normal-structure dose-volume metrics.

Authors :
Rosenberg MW
Kato CM
Carson KM
Matsunaga NM
Arao RF
Doss EJ
McCracken CL
Meng LZ
Chen Y
Laub WU
Fuss M
Tanyi JA
Source :
Medical dosimetry : official journal of the American Association of Medical Dosimetrists [Med Dosim] 2013 Winter; Vol. 38 (4), pp. 407-12. Date of Electronic Publication: 2013 Jun 28.
Publication Year :
2013

Abstract

To compare 2 beam arrangements, sectored (beam entry over ipsilateral hemithorax) vs circumferential (beam entry over both ipsilateral and contralateral lungs), for static-gantry intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) delivery techniques with respect to target and organs-at-risk (OAR) dose-volume metrics, as well as treatment delivery efficiency. Data from 60 consecutive patients treated using stereotactic body radiation therapy (SBRT) for primary non-small-cell lung cancer (NSCLC) formed the basis of this study. Four treatment plans were generated per data set: IMRT/VMAT plans using sectored (-s) and circumferential (-c) configurations. The prescribed dose (PD) was 60Gy in 5 fractions to 95% of the planning target volume (PTV) (maximum PTV dose ~ 150% PD) for a 6-MV photon beam. Plan conformality, R50 (ratio of volume circumscribed by the 50% isodose line and the PTV), and D2cm (Dmax at a distance ≥2cm beyond the PTV) were evaluated. For lungs, mean doses (mean lung dose [MLD]) and percent V30/V20/V10/V5Gy were assessed. Spinal cord and esophagus Dmax and D5/D50 were computed. Chest wall (CW) Dmax and absolute V30/V20/V10/V5Gy were reported. Sectored SBRT planning resulted in significant decrease in contralateral MLD and V10/V5Gy, as well as contralateral CW Dmax and V10/V5Gy (all p < 0.001). Nominal reductions of Dmax and D5/D50 for the spinal cord with sectored planning did not reach statistical significance for static-gantry IMRT, although VMAT metrics did show a statistically significant decrease (all p < 0.001). The respective measures for esophageal doses were significantly lower with sectored planning (p < 0.001). Despite comparable dose conformality, irrespective of planning configuration, R50 significantly improved with IMRT-s/VMAT-c (p < 0.001/p = 0.008), whereas D2cm significantly improved with VMAT-c (p < 0.001). Plan delivery efficiency improved with sectored technique (p < 0.001); mean monitor unit (MU)/cGy of PD decreased from 5.8 ± 1.9 vs 5.3 ± 1.7 (IMRT) and 2.7 ± 0.4 vs 2.4 ± 0.3 (VMAT). The sectored configuration achieves unambiguous dosimetric advantages over circumferential arrangement in terms of esophageal, contralateral CW, and contralateral lung sparing, in addition to being more efficient at delivery.<br /> (© 2013 American Association of Medical Dosimetrists.)

Details

Language :
English
ISSN :
1873-4022
Volume :
38
Issue :
4
Database :
MEDLINE
Journal :
Medical dosimetry : official journal of the American Association of Medical Dosimetrists
Publication Type :
Academic Journal
Accession number :
23810414
Full Text :
https://doi.org/10.1016/j.meddos.2013.05.002