Back to Search
Start Over
Fabrication of fibrin based electrospun multiscale composite scaffold for tissue engineering applications.
- Source :
-
Journal of biomedical nanotechnology [J Biomed Nanotechnol] 2013 May; Vol. 9 (5), pp. 790-800. - Publication Year :
- 2013
-
Abstract
- Fabricating scaffolds mimicking the native extracellular matrix (ECM) in both structure and function is a key challenge in the field of tissue engineering. Previously we have demonstrated a novel electrospinnig method for the fabrication of fibrin nanofibers using Poly(vinyl alcohol) (PVA) as an 'electrospinning-driving' polymer. Here we demonstrate the fabrication and characterization of a multiscale fibrin based composite scaffold with polycaprolactone (PCL) by sequential electrospinning of PCL microfibers and fibrin nanofibers. This multiscale scaffold has great potential for tissue engineering applications due to the combined benefits of biological nanofibers such as cell attachment and proliferation and that of microfibers such as open structure, larger pore size and adequate mechanical strength. Physico chemical characterization of the electrospun scaffold was done by Scanning Electron Microscopy (SEM), Contact angle analysis, fibrin specific Phosphotungstic acid haematoxyllin (PTAH) staining and evaluation of mechanical properties. SEM data revealed the formation of bead free nanofibers of fibrin with a fiber diameter ranging from 50-500 nm and microfibers of PCL in the size range of 1 microns to 2.5 microns. These dimensions mimic the hierarchical structure of ECM found in native tissues. Cell attachment and viability studies using human mesenchymal stem cells (hMSC) revealed that the scaffold is non toxic and supports cell attachment, spreading and proliferation. In addition, we examined the inflammatory potential of the scaffold to demonstrate its usefulness in tissue engineering applications.
- Subjects :
- Cell Proliferation drug effects
Cells, Cultured
Coated Materials, Biocompatible chemistry
Coated Materials, Biocompatible pharmacology
Electroplating methods
Fetal Blood cytology
Fibrin chemical synthesis
Fibrin pharmacology
Humans
Infant, Newborn
Leukocytes, Mononuclear drug effects
Leukocytes, Mononuclear physiology
Materials Testing
Mesenchymal Stem Cells drug effects
Mesenchymal Stem Cells physiology
Microtechnology
Polyesters chemical synthesis
Polyesters pharmacology
Cell Culture Techniques instrumentation
Coated Materials, Biocompatible chemical synthesis
Fibrin chemistry
Polyesters chemistry
Tissue Engineering instrumentation
Tissue Scaffolds chemistry
Subjects
Details
- Language :
- English
- ISSN :
- 1550-7033
- Volume :
- 9
- Issue :
- 5
- Database :
- MEDLINE
- Journal :
- Journal of biomedical nanotechnology
- Publication Type :
- Academic Journal
- Accession number :
- 23802408
- Full Text :
- https://doi.org/10.1166/jbn.2013.1585