Back to Search Start Over

4-vinyl-substituted pyrimidine nucleosides exhibit the efficient and selective formation of interstrand cross-links with RNA and duplex DNA.

Authors :
Nishimoto A
Jitsuzaki D
Onizuka K
Taniguchi Y
Nagatsugi F
Sasaki S
Source :
Nucleic acids research [Nucleic Acids Res] 2013 Jul; Vol. 41 (13), pp. 6774-81. Date of Electronic Publication: 2013 Jun 18.
Publication Year :
2013

Abstract

The formation of interstrand cross-links in nucleic acids can have a strong impact on biological function of nucleic acids; therefore, many cross-linking agents have been developed for biological applications. Despite numerous studies, there remains a need for cross-linking agents that exhibit both efficiency and selectivity. In this study, a 4-vinyl-substituted analog of thymidine (T-vinyl derivative) was designed as a new cross-linking agent, in which the vinyl group is oriented towards the Watson-Crick face to react with the amino group of an adenine base. The interstrand cross-link formed rapidly and selectively with a uridine on the RNA substrate at the site opposite to the T-vinyl derivative. A detailed analysis of cross-link formation while varying the flanking bases of the RNA substrates indicated that interstrand cross-link formation is preferential for the adenine base on the 5'-side of the opposing uridine. In the absence of a 5'-adenine, a uridine at the opposite position underwent cross-linking. The oligodeoxynucleotides probe incorporating the T-vinyl derivative efficiently formed interstrand cross-links in parallel-type triplex DNA with high selectivity for dA in the homopurine strand. The efficiency and selectivity of the T-vinyl derivative illustrate its potential use as a unique tool in biological and materials research.

Details

Language :
English
ISSN :
1362-4962
Volume :
41
Issue :
13
Database :
MEDLINE
Journal :
Nucleic acids research
Publication Type :
Academic Journal
Accession number :
23778430
Full Text :
https://doi.org/10.1093/nar/gkt197