Back to Search
Start Over
Differential response of archaeal groups to land use change in an acidic red soil.
- Source :
-
The Science of the total environment [Sci Total Environ] 2013 Sep 01; Vol. 461-462, pp. 742-9. Date of Electronic Publication: 2013 Jun 15. - Publication Year :
- 2013
-
Abstract
- Land use management, one of the most important aspects of anthropogenic disturbance to terrestrial ecosystems, has exerted overriding impacts on soil biogeochemical cycling and inhabitant microorganisms. However, the knowledge concerning response of different archaeal groups to long-term land use changes is still limited in terrestrial environments. Here we used quantitative polymerase chain reaction (qPCR) and denaturing gradient gel electrophoresis (DGGE) approaches to investigate the response of archaeal communities to four different land use practices, i.e. cropland, pine forest, restoration land and degradation land. qPCR analyses showed that expression of the archaeal amoA gene responds more sensitively to changes of land use. In particular, we observed, occurring at significantly lower numbers of archaeal amoA genes in degradation land samples, while the abundance of total archaea and Group 1.1c based on 16S rRNA gene copy numbers remained constant among the different treatments examined. Soil nitrate content is significantly correlated with archaeal amoA gene abundance, but not their bacterial counterparts. The percentage of archaea among total prokaryote communities increases with increasing depth, but has no significant relationship with total carbon, total nitrogen or pH. Soil pH was significantly correlated with total bacterial abundance. Based on results from PCR-DGGE, three land use practices (i.e. cropland, pine forest, restoration land) showed distinct dominant bands, which were mostly affiliated with Group 1.1a. Degradation land, however, was dominated by sequences belonging to Group 1.1c. Results from this study suggest that community structure of ammonia oxidizing archaea were significantly impacted by land use practices.<br /> (Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.)
- Subjects :
- Analysis of Variance
Archaea metabolism
Base Sequence
China
Cluster Analysis
DNA Primers genetics
Denaturing Gradient Gel Electrophoresis
Gene Dosage genetics
Genes, Archaeal genetics
Hydrogen-Ion Concentration
Molecular Sequence Data
Nitrates analysis
Polymerase Chain Reaction
Population Density
RNA, Ribosomal, 16S genetics
Sequence Analysis, DNA
Species Specificity
Archaea genetics
Ecosystem
Phylogeny
Soil chemistry
Soil Microbiology
Subjects
Details
- Language :
- English
- ISSN :
- 1879-1026
- Volume :
- 461-462
- Database :
- MEDLINE
- Journal :
- The Science of the total environment
- Publication Type :
- Academic Journal
- Accession number :
- 23774250
- Full Text :
- https://doi.org/10.1016/j.scitotenv.2013.05.070