Back to Search
Start Over
Powering the programmed nanostructure and function of gold nanoparticles with catenated DNA machines.
- Source :
-
Nature communications [Nat Commun] 2013; Vol. 4, pp. 2000. - Publication Year :
- 2013
-
Abstract
- DNA nanotechnology is a rapidly developing research area in nanoscience. It includes the development of DNA machines, tailoring of DNA nanostructures, application of DNA nanostructures for computing, and more. Different DNA machines were reported in the past and DNA-guided assembly of nanoparticles represents an active research effort in DNA nanotechnology. Several DNA-dictated nanoparticle structures were reported, including a tetrahedron, a triangle or linear nanoengineered nanoparticle structures; however, the programmed, dynamic reversible switching of nanoparticle structures and, particularly, the dictated switchable functions emerging from the nanostructures, are missing elements in DNA nanotechnology. Here we introduce DNA catenane systems (interlocked DNA rings) as molecular DNA machines for the programmed, reversible and switchable arrangement of different-sized gold nanoparticles. We further demonstrate that the machine-powered gold nanoparticle structures reveal unique emerging switchable spectroscopic features, such as plasmonic coupling or surface-enhanced fluorescence.
Details
- Language :
- English
- ISSN :
- 2041-1723
- Volume :
- 4
- Database :
- MEDLINE
- Journal :
- Nature communications
- Publication Type :
- Academic Journal
- Accession number :
- 23759797
- Full Text :
- https://doi.org/10.1038/ncomms3000