Back to Search Start Over

Neisseria gonorrhoeae-derived heptose elicits an innate immune response and drives HIV-1 expression.

Authors :
Malott RJ
Keller BO
Gaudet RG
McCaw SE
Lai CC
Dobson-Belaire WN
Hobbs JL
St Michael F
Cox AD
Moraes TF
Gray-Owen SD
Source :
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2013 Jun 18; Vol. 110 (25), pp. 10234-9. Date of Electronic Publication: 2013 Jun 03.
Publication Year :
2013

Abstract

Clinical and epidemiological synergy exists between the globally important sexually transmitted infections, gonorrhea and HIV. Neisseria gonorrhoeae, which causes gonorrhea, is particularly adept at driving HIV-1 expression, but the molecular determinants of this relationship remain undefined. N. gonorrhoeae liberates a soluble factor that potently induces expression from the HIV-1 LTR in coinfected cluster of differentiation 4-positive (CD4(+)) T lymphocytes, but this factor is not a previously described innate effector. A genome-wide mutagenesis approach was undertaken to reveal which component(s) of N. gonorrhoeae induce HIV-1 expression in CD4(+) T lymphocytes. A mutation in the ADP-heptose biosynthesis gene, hldA, rendered the bacteria unable to induce HIV-1 expression. The hldA mutant has a truncated lipooligosaccharide structure, contains lipid A in its outer membrane, and remains bioactive in a TLR4 reporter-based assay but did not induce HIV-1 expression. Mass spectrometry analysis of extensively fractionated N. gonorrhoeae-derived supernatants revealed that the LTR-inducing fraction contained a compound having a mass consistent with heptose-monophosphate (HMP). Heptose is a carbohydrate common in microbes but is absent from the mammalian glycome. Although ADP-heptose biosynthesis is common among Gram-negative bacteria, and heptose is a core component of most lipopolysaccharides, N. gonorrhoeae is peculiar in that it effectively liberates HMP during growth. This N. gonorrhoeae-derived HMP activates CD4(+) T cells to invoke an NF-κB-dependent transcriptional response that drives HIV-1 expression and viral production. Our study thereby shows that heptose is a microbial-specific product that is sensed as an innate immune agonist and unveils the molecular link between N. gonorrhoeae and HIV-1.

Details

Language :
English
ISSN :
1091-6490
Volume :
110
Issue :
25
Database :
MEDLINE
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
23733950
Full Text :
https://doi.org/10.1073/pnas.1303738110