Back to Search Start Over

Human stem cell-based three-dimensional microtissues for advanced cardiac cell therapies.

Authors :
Emmert MY
Wolint P
Wickboldt N
Gemayel G
Weber B
Brokopp CE
Boni A
Falk V
Bosman A
Jaconi ME
Hoerstrup SP
Source :
Biomaterials [Biomaterials] 2013 Sep; Vol. 34 (27), pp. 6339-54. Date of Electronic Publication: 2013 May 30.
Publication Year :
2013

Abstract

Cardiac stem cell therapy has been proposed as a therapy option to treat the diseased myocardium. However, the low retention rate of transplanted single-cell suspensions remains a major issue of current therapy strategies. Therefore, the concept of scaffold-free cellular self-assembly into three-dimensional microtissues (3D-MTs) prior to transplantation may be beneficial to enhance retention and survival. We compared clinically relevant, human stem cell sources for their ability to generate 3D-MTs with particular regards to formation characteristics, proliferation-activity, viability and extracellular-matrix production. Single-cell suspensions of human bone marrow- and adipose tissue-derived mesenchymal stem cells (hBMMSCs and hATMSCs), Isl1(+) cardiac progenitors derived from human embryonic stem cells (hESC-Isl1(+) cells), and undifferentiated human induced pluripotent cells (hiPSCs) were characterized before to generate 3D-MTs using a hanging-drop culture. Besides the principal feasibility of cell-specific 3D-MT formation, a detailed head-to-head comparison between cell sources was performed using histology, immunocyto- and histo-chemistry as well as flow cytometry. Round-oval shaped and uniform 3D-MTs could be successfully generated from all cell types starting with a loose formation within the first 24 h that fully stabilized after 3 days and resulting in a mean 3D-MT diameter of 194.56 ± 18.01 μm (hBMMSCs), 194.56 ± 16.30 μm (hATMSCs), 159.73 ± 19.20 μm (hESC-Isl1(+) cells) and 120.95 ± 7.97 μm (hiPSCs). While all 3D-MTs showed a homogenous cell distribution, hiPSC-derived 3D-MTs displayed a compact cell formation primarily located at the outer margin. hESC-Isl1(+) and hiPSC-derived 3D-MTs maintained their proliferation-activity which was rather limited in the MSC-based 3D-MTs. All four 3D-MT types revealed a comparable viability in excess of 70% and showed a cell-specific expression profile being comparable to their single-cell counterparts. Extracellular matrix (ECM) production during 3D-MT formation was observed for all cell-specific 3D-MTs, with hiPSC-derived 3D-MTs being the fastest one. Interestingly, ECM distribution was homogenous for hATMSC- and hiPSC-based 3D-MTs, while it appeared to be primarily concentrated within in the center of hESC-Isl1(+) and hBMMSC-based 3D-MTs. The results of this head-to-head comparative study indicated that 3D-MTs can be successfully generated from hESC-derived Isl1(+) cells, hiPSCs and MSC lines upon hanging drop culture. Cell-specific 3D-MTs displayed sufficient viability and instant ECM formation. The concept of 3D-MT in vitro generation prior to cell transplantation may represent a promising delivery format for future strategies to enhance cellular engraftment and survival.<br /> (Copyright © 2013 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1878-5905
Volume :
34
Issue :
27
Database :
MEDLINE
Journal :
Biomaterials
Publication Type :
Academic Journal
Accession number :
23727259
Full Text :
https://doi.org/10.1016/j.biomaterials.2013.04.034