Back to Search Start Over

In vivo kinematics of the extensor mechanism of the knee during deep flexion.

Authors :
Kobayashi K
Hosseini A
Sakamoto M
Qi W
Rubash HE
Li G
Source :
Journal of biomechanical engineering [J Biomech Eng] 2013 Aug; Vol. 135 (8), pp. 81002.
Publication Year :
2013

Abstract

While various factors have been assumed to affect knee joint biomechanics, few data have been reported on the function of the extensor mechanism in deep flexion of the knee. This study analyzed the patellofemoral joint contact kinematics and the ratio of the quadriceps and patellar tendon forces in living subjects when they performed a single leg lunge up to 150 deg of flexion. The data revealed that in the proximal-distal direction, the patellofemoral articular contact points were in the central one-third of the patellar cartilage. Beyond 90 deg of flexion, the contact points moved towards the medial-lateral edges of the patellar surface. At low flexion angles, the patellar tendon and quadriceps force ratio was approximately 1.0 but reduced to about 0.7 after 60 deg of knee flexion, implying that the patella tendon carries lower loads than the quadriceps. These data may be valuable for improvement of contemporary surgical treatments of diseased knees that are aimed to achieve deep knee flexion.

Details

Language :
English
ISSN :
1528-8951
Volume :
135
Issue :
8
Database :
MEDLINE
Journal :
Journal of biomechanical engineering
Publication Type :
Academic Journal
Accession number :
23719832
Full Text :
https://doi.org/10.1115/1.4024284