Back to Search Start Over

Giant surfactants provide a versatile platform for sub-10-nm nanostructure engineering.

Authors :
Yu X
Yue K
Hsieh IF
Li Y
Dong XH
Liu C
Xin Y
Wang HF
Shi AC
Newkome GR
Ho RM
Chen EQ
Zhang WB
Cheng SZ
Source :
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2013 Jun 18; Vol. 110 (25), pp. 10078-83. Date of Electronic Publication: 2013 May 28.
Publication Year :
2013

Abstract

The engineering of structures across different length scales is central to the design of novel materials with controlled macroscopic properties. Herein, we introduce a unique class of self-assembling materials, which are built upon shape- and volume-persistent molecular nanoparticles and other structural motifs, such as polymers, and can be viewed as a size-amplified version of the corresponding small-molecule counterparts. Among them, "giant surfactants" with precise molecular structures have been synthesized by "clicking" compact and polar molecular nanoparticles to flexible polymer tails of various composition and architecture at specific sites. Capturing the structural features of small-molecule surfactants but possessing much larger sizes, giant surfactants bridge the gap between small-molecule surfactants and block copolymers and demonstrate a duality of both materials in terms of their self-assembly behaviors. The controlled structural variations of these giant surfactants through precision synthesis further reveal that their self-assemblies are remarkably sensitive to primary chemical structures, leading to highly diverse, thermodynamically stable nanostructures with feature sizes around 10 nm or smaller in the bulk, thin-film, and solution states, as dictated by the collective physical interactions and geometric constraints. The results suggest that this class of materials provides a versatile platform for engineering nanostructures with sub-10-nm feature sizes. These findings are not only scientifically intriguing in understanding the chemical and physical principles of the self-assembly, but also technologically relevant, such as in nanopatterning technology and microelectronics.

Details

Language :
English
ISSN :
1091-6490
Volume :
110
Issue :
25
Database :
MEDLINE
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
23716680
Full Text :
https://doi.org/10.1073/pnas.1302606110