Back to Search
Start Over
Region-specific expression of aquaporin subtypes in equine testis, epididymis, and ductus deferens.
- Source :
-
Anatomical record (Hoboken, N.J. : 2007) [Anat Rec (Hoboken)] 2013 Jul; Vol. 296 (7), pp. 1115-26. Date of Electronic Publication: 2013 May 27. - Publication Year :
- 2013
-
Abstract
- The process of water movement in the excurrent duct system of the male reproductive tract is pivotal for establishment of male fertility. The objective was to elucidate expression of aquaporin (AQP) water channels in the stallion reproductive tract. Real-time RT-PCR detected expression of AQP0-5 and AQP7-11 in testis, epididymis, and ductus deferens of mature stallions. There were two main expression patterns: (1) higher expression in testis than in epididymis and ductus deferens (AQP0, -4, -5, -8, -10, and -11); and (2) lower expression in testis than in epididymis and ductus deferens (AQP1, -3, -7, and -9). Overall, we inferred that fluid transport in the stallion testicle involved a collaboration of AQP subtypes (primarily AQP2, -5, -7, and -8). Based on immunohistochemistry, expression of AQP subtypes analyzed (i.e., AQP0, -2, -5, and -9) was localized to Leydig cells and elongated and round spermatids. Functional significance of AQP expression by Leydig cells remained uncertain. In elongated and round spermatids, AQP s likely contributed to the volume reduction observed during spermatogenesis. Subtypes AQP2 and AQP9 were the predominant forms expressed in epididymal tissue. Regulation of AQP2 expression, especially in the epididymal head, seemed to occur at the post-transcriptional level, as protein expression upon immunohistochemistry was pronounced, despite low transcript abundance. In epididymal tissue, AQPs likely contributed to fluid resorbtion, given their localization on the apical membrane of principal cells.<br /> (Copyright © 2013 Wiley Periodicals, Inc.)
- Subjects :
- Animals
Aquaporins genetics
Blotting, Western
Gene Expression Regulation
Horses genetics
Immunohistochemistry
Leydig Cells chemistry
Male
RNA, Messenger analysis
Real-Time Polymerase Chain Reaction
Reverse Transcriptase Polymerase Chain Reaction
Spermatids chemistry
Aquaporins analysis
Epididymis chemistry
Horses metabolism
Testis chemistry
Vas Deferens chemistry
Subjects
Details
- Language :
- English
- ISSN :
- 1932-8494
- Volume :
- 296
- Issue :
- 7
- Database :
- MEDLINE
- Journal :
- Anatomical record (Hoboken, N.J. : 2007)
- Publication Type :
- Academic Journal
- Accession number :
- 23712968
- Full Text :
- https://doi.org/10.1002/ar.22709