Back to Search
Start Over
Cloning and characterization of the glycoside hydrolases that remove xylosyl groups from 7-β-xylosyl-10-deacetyltaxol and its analogues.
- Source :
-
Molecular & cellular proteomics : MCP [Mol Cell Proteomics] 2013 Aug; Vol. 12 (8), pp. 2236-48. Date of Electronic Publication: 2013 May 10. - Publication Year :
- 2013
-
Abstract
- Paclitaxel, a natural antitumor compound, is produced by yew trees at very low concentrations, causing a worldwide shortage of this important anticancer medicine. These plants also produce significant amounts of 7-β-xylosyl-10-deacetyltaxol, which can be bio-converted into 10-deacetyltaxol for the semi-synthesis of paclitaxel. Some microorganisms can convert 7-β-xylosyl-10-deacetyltaxol into 10-deacetyltaxol, but the bioconversion yield needs to be drastically improved for industrial applications. In addition, the related β-xylosidases of these organisms have not yet been defined. We set out to discover an efficient enzyme for 10-deacetyltaxol production. By combining the de novo sequencing of β-xylosidase isolated from Lentinula edodes with RT-PCR and the rapid amplification of cDNA ends, we cloned two cDNA variants, Lxyl-p1-1 and Lxyl-p1-2, which were previously unknown at the gene and protein levels. Both variants encode a specific bifunctional β-d-xylosidase/β-d-glucosidase with an identical ORF length of 2412 bp (97% identity). The enzymes were characterized, and their 3.6-kb genomic DNAs (G-Lxyl-p1-1, G-Lxyl-p1-2), each harboring 18 introns, were also obtained. Putative substrate binding motifs, the catalytic nucleophile, the catalytic acid/base, and potential N-glycosylation sites of the enzymes were predicted. Kinetic analysis of both enzymes showed kcat/Km of up to 1.07 s(-1)mm(-1) against 7-β-xylosyl-10-deacetyltaxol. Importantly, at substrate concentrations of up to 10 mg/ml (oversaturated), the engineered yeast could still robustly convert 7-β-xylosyl-10-deacetyltaxol into 10-deacetyltaxol with a conversion rate of over 85% and a highest yield of 8.42 mg/ml within 24 h, which is much higher than those reported previously. Therefore, our discovery might lead to significant progress in the development of new 7-β-xylosyl-10-deacetyltaxol-converting enzymes for more efficient use of 7-β-xylosyltaxanes to semi-synthesize paclitaxel and its analogues. This work also might lead to further studies on how these enzymes act on 7-β-xylosyltaxanes and contribute to the growing database of glycoside hydrolases.
- Subjects :
- Amino Acid Sequence
Base Sequence
Cloning, Molecular
DNA, Complementary genetics
DNA, Fungal genetics
Fungal Proteins genetics
Molecular Sequence Data
RNA, Fungal genetics
Shiitake Mushrooms genetics
Xylosidases genetics
Yeasts genetics
Yeasts metabolism
Shiitake Mushrooms enzymology
Taxoids metabolism
Xylosidases metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1535-9484
- Volume :
- 12
- Issue :
- 8
- Database :
- MEDLINE
- Journal :
- Molecular & cellular proteomics : MCP
- Publication Type :
- Academic Journal
- Accession number :
- 23665501
- Full Text :
- https://doi.org/10.1074/mcp.M113.030619