Back to Search Start Over

On the photodetachment from the green fluorescent protein chromophore.

Authors :
Bravaya KB
Krylov AI
Source :
The journal of physical chemistry. A [J Phys Chem A] 2013 Nov 21; Vol. 117 (46), pp. 11815-22. Date of Electronic Publication: 2013 May 24.
Publication Year :
2013

Abstract

Motivated by the discrepancies in recent experimental and theoretical studies of photodetachment from isolated model chromophores of the green fluorescent protein (GFP), this study reports calculations of the electron detachment energies and photoelectron spectra of the phenolate and deprotonated p-hydroxybenzylidene-2,3-dimethylimidazolinone (HBDI) anions. The spectra were computed using double-harmonic parallel normal mode approximation. High-level coupled-cluster methods as well as density functional theory were used to compute vertical and adiabatic detachment energies of the phenolate anion serving as a model system representing anionic GFP-like chromophores (HBDI). The benchmark calculations reveal that the basis set has significant effect on the computed detachment energies, whereas the results are less sensitive to the level of electron correlation treatment. At least aug-cc-pVTZ basis set is required. The best ωB97X-D and CCSD(T) estimates of phenolate's adiabatic detachment energy are 2.12 and 2.19 eV; these values are very close to the experimental value, 2.253 eV [Gunion et al. Int. J. Mass Spectrom. Ion Proc. 1992, 117, 601]. The best estimate of the vertical detachment energy of deprotonated HBDI is 2.76 eV, which supports bound character of the bright excited state in the Franck-Condon region. The most intense transition in the computed photoelectron spectra of both phenolate and deprotonated HBDI is the 0-0 S0-D0 transition, which is 0.11 eV below vertical detachment energy. Therefore, the position of the maximum of the photoelectron spectrum does not represent vertical detachment energy, and the direct comparison between theory and experiment must involve spectrum modeling.

Details

Language :
English
ISSN :
1520-5215
Volume :
117
Issue :
46
Database :
MEDLINE
Journal :
The journal of physical chemistry. A
Publication Type :
Academic Journal
Accession number :
23662849
Full Text :
https://doi.org/10.1021/jp4028904