Back to Search Start Over

Resistive switching memory characteristics of Ge/GeOx nanowires and evidence of oxygen ion migration.

Authors :
Prakash A
Maikap S
Rahaman SZ
Majumdar S
Manna S
Ray SK
Source :
Nanoscale research letters [Nanoscale Res Lett] 2013 May 08; Vol. 8 (1), pp. 220. Date of Electronic Publication: 2013 May 08.
Publication Year :
2013

Abstract

The resistive switching memory of Ge nanowires (NWs) in an IrOx/Al2O3/Ge NWs/SiO2/p-Si structure is investigated. Ge NWs with an average diameter of approximately 100 nm are grown by the vapor-liquid-solid technique. The core-shell structure of the Ge/GeOx NWs is confirmed by both scanning electron microscopy and high-resolution transmission electron microscopy. Defects in the Ge/GeOx NWs are observed by X-ray photoelectron spectroscopy. Broad photoluminescence spectra from 10 to 300 K are observed because of defects in the Ge/GeOx NWs, which are also useful for nanoscale resistive switching memory. The resistive switching mechanism in an IrOx/GeOx/W structure involves migration of oxygen ions under external bias, which is also confirmed by real-time observation of the surface of the device. The porous IrOx top electrode readily allows the evolved O2 gas to escape from the device. The annealed device has a low operating voltage (<4 V), low RESET current (approximately 22 μA), large resistance ratio (>103), long pulse read endurance of >105 cycles, and good data retention of >104 s. Its performance is better than that of the as-deposited device because the GeOx film in the annealed device contains more oxygen vacancies. Under SET operation, Ge/GeOx nanofilaments (or NWs) form in the GeOx film. The diameter of the conducting nanofilament is approximately 40 nm, which is calculated using a new method.

Details

Language :
English
ISSN :
1931-7573
Volume :
8
Issue :
1
Database :
MEDLINE
Journal :
Nanoscale research letters
Publication Type :
Academic Journal
Accession number :
23657016
Full Text :
https://doi.org/10.1186/1556-276X-8-220