Back to Search
Start Over
Anti-angiogenic and anti-cancer evaluation of betulin nanoemulsion in chicken chorioallantoic membrane and skin carcinoma in Balb/c mice.
- Source :
-
Journal of biomedical nanotechnology [J Biomed Nanotechnol] 2013 Apr; Vol. 9 (4), pp. 577-89. - Publication Year :
- 2013
-
Abstract
- Betulin (Bet), the main component of birch tree bark, has been recently reported to exert anticancer activity in several cell lines; however the underlying mechanisms are only partially elucidated. The aims of the present work were to assess the in vivo effects of betulin administered as nanoemulsion (NE) in two experimental models: (i) the chicken embryo chorioallantoic membrane (CAM) assay for the study of anti-angiogenic effects and (ii) the two-stage model of skin carcinoma induced in mice for the study of anti-tumor and anti-inflammatory effects, respectively. On the CAM of the chicken betulin in nanoemulsion (BetNE) shows a good penetrability at extra-embryonic tissue level, affecting both the chorioallantoic membrane as well as the yolk sac by reducing the capillary density. In the animal model, the potential impact of local application of betulin on the respiratory function of isolated liver mitochondria was further assessed. Topical application of betulin nanoemulsion for 12 weeks together with DMBA (7,12-dimethylbenz[a]anthracene) and TPA (12-O-tetradecanoylphorbol 13-acetate), as tumor initiator and promoter, enhanced the active respiration of isolated liver mitochondria. Betulin also inhibit skin tumor apparition and promotion, proved by histological results and VEGF (vascular endothelial growth factor) expression correlated to non-invasive measurements. Betulin is active in nanoemulsion formulation as a potential inhibitory on the angiogenic process in CAM assay. BetNE can develop a potent anti-inflammatory and anti-carcinogenic activity with a low toxicity at skin level. It can also influence the penetration of carcinogens and reduce damage in main organs (e.g., liver).
- Subjects :
- Animals
Anticarcinogenic Agents therapeutic use
Cell Respiration drug effects
Chick Embryo
Chorioallantoic Membrane drug effects
Emulsions
Immunohistochemistry
Mice
Mice, Inbred BALB C
Neovascularization, Physiologic drug effects
Oxygen Consumption drug effects
Skin Neoplasms blood supply
Triterpenes pharmacology
Vascular Endothelial Growth Factor A metabolism
Angiogenesis Inhibitors pharmacology
Anticarcinogenic Agents pharmacology
Chorioallantoic Membrane blood supply
Nanoparticles chemistry
Skin Neoplasms drug therapy
Triterpenes therapeutic use
Subjects
Details
- Language :
- English
- ISSN :
- 1550-7033
- Volume :
- 9
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- Journal of biomedical nanotechnology
- Publication Type :
- Academic Journal
- Accession number :
- 23621016
- Full Text :
- https://doi.org/10.1166/jbn.2013.1563