Back to Search
Start Over
Convergence of pontine and proprioceptive streams onto multimodal cerebellar granule cells.
- Source :
-
ELife [Elife] 2013 Feb 26; Vol. 2, pp. e00400. Date of Electronic Publication: 2013 Feb 26. - Publication Year :
- 2013
-
Abstract
- Cerebellar granule cells constitute the majority of neurons in the brain and are the primary conveyors of sensory and motor-related mossy fiber information to Purkinje cells. The functional capability of the cerebellum hinges on whether individual granule cells receive mossy fiber inputs from multiple precerebellar nuclei or are instead unimodal; this distinction is unresolved. Using cell-type-specific projection mapping with synaptic resolution, we observed the convergence of separate sensory (upper body proprioceptive) and basilar pontine pathways onto individual granule cells and mapped this convergence across cerebellar cortex. These findings inform the long-standing debate about the multimodality of mammalian granule cells and substantiate their associative capacity predicted in the Marr-Albus theory of cerebellar function. We also provide evidence that the convergent basilar pontine pathways carry corollary discharges from upper body motor cortical areas. Such merging of related corollary and sensory streams is a critical component of circuit models of predictive motor control. DOI:http://dx.doi.org/10.7554/eLife.00400.001.
- Subjects :
- Animals
Cerebellum cytology
Cerebellum metabolism
Feedback, Sensory
Mice, Inbred C57BL
Mice, Transgenic
Nerve Fibers metabolism
Neural Pathways physiology
Neuroanatomical Tract-Tracing Techniques
Neurons metabolism
Pons cytology
Pons metabolism
Synaptic Transmission
Cerebellum physiology
Motor Activity
Nerve Fibers physiology
Neurons physiology
Pons physiology
Proprioception
Subjects
Details
- Language :
- English
- ISSN :
- 2050-084X
- Volume :
- 2
- Database :
- MEDLINE
- Journal :
- ELife
- Publication Type :
- Academic Journal
- Accession number :
- 23467508
- Full Text :
- https://doi.org/10.7554/eLife.00400