Back to Search
Start Over
C2362F mutation gives rise to an ADAMTS13-resistant von Willebrand factor.
- Source :
-
Thrombosis and haemostasis [Thromb Haemost] 2013 Jun; Vol. 109 (6), pp. 999-1006. Date of Electronic Publication: 2013 Feb 28. - Publication Year :
- 2013
-
Abstract
- von Willebrand factor (VWF) multimers result from proteolysis by the metalloprotease ADAMTS13. Since C2362F-VWF features abnormally large multimers with their triplet oligomer structure replaced by a diffuse smear, we explored the susceptibility of C2362F-VWF to ADAMTS13. VWF-enriched blood samples, obtained by cryoethanol precipitation of plasma from a patient with von Willebrand disease (VWD) homozygous for the C2362F mutation and a normal subject, were submitted to cleavage by recombinant ADAMTS13 under static conditions in the presence of urea. C2362F-VWF proved completely ADAMTS13-resistant in vitro. At any concentration of recombinant ADAMTS13 (from 0.1 µM to 1 µM), there was no evidence of the abnormally large VWF multimers of C2362F-VWF disappearing, nor any increased representation of triplet multimer bands, unlike the situation seen in normal VWF. This is due partly to a defective ADAMTS13 binding to C2362F-VWF under static conditions, as seen in both the patient's and recombinant mutated VWF proteins. These findings were associated with a significantly shorter than normal survival of C2362F-VWF after DDAVP, demonstrating that proteolysis and VWF survival may be independent phenomena. Our findings clearly demonstrate that the loss of cysteine 2362 makes VWF resistant to proteolysis by ADAMTS13, at least partly due to an impaired ADAMTS13 binding to VWF. This suggests that the B2 domain of VWF is involved in modulating ADAMTS13 binding to VWF and the consequent proteolytic process. The C2362F-VWF mutation also enables a new abnormality to be identified in the VWF-ADAMTS13 relationship, i.e. an ADAMTS13-resistant VWF.
- Subjects :
- ADAMTS13 Protein
Binding Sites
Biotinylation
Cysteine genetics
Dose-Response Relationship, Drug
Family Health
Female
Hemostasis
Homozygote
Humans
Male
Protein Binding
Protein Structure, Tertiary
Recombinant Proteins chemistry
von Willebrand Diseases metabolism
ADAM Proteins genetics
ADAM Proteins metabolism
Mutation
von Willebrand Diseases genetics
von Willebrand Factor genetics
von Willebrand Factor metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 2567-689X
- Volume :
- 109
- Issue :
- 6
- Database :
- MEDLINE
- Journal :
- Thrombosis and haemostasis
- Publication Type :
- Academic Journal
- Accession number :
- 23446343
- Full Text :
- https://doi.org/10.1160/TH12-11-0808