Back to Search
Start Over
Selective in vivo visualization of immune-cell infiltration in a mouse model of autoimmune myocarditis by fluorine-19 cardiac magnetic resonance.
- Source :
-
Circulation. Cardiovascular imaging [Circ Cardiovasc Imaging] 2013 Mar 01; Vol. 6 (2), pp. 277-84. Date of Electronic Publication: 2013 Jan 23. - Publication Year :
- 2013
-
Abstract
- Background: The goal of this study was to characterize the performance of fluorine-19 ((19)F) cardiac magnetic resonance (CMR) for the specific detection of inflammatory cells in a mouse model of myocarditis. Intravenously administered perfluorocarbons are taken up by infiltrating inflammatory cells and can be detected by (19)F-CMR. (19)F-labeled cells should, therefore, generate an exclusive signal at the inflamed regions within the myocardium.<br />Methods and Results: Experimental autoimmune myocarditis was induced in BALB/c mice. After intravenous injection of 2×200 µL of a perfluorocarbon on day 19 and 20 (n=9) after immunization, in vivo (19)F-CMR was performed at the peak of myocardial inflammation (day 21). In 5 additional animals, perfluorocarbon combined with FITC (fluorescein isothiocyanate) was administered for postmortem immunofluorescence and flow-cytometry analyses. Control experiments were performed in 9 animals. In vivo (19)F-CMR detected myocardial inflammation in all experimental autoimmune myocarditis-positive animals. Its resolution was sufficient to identify even small inflammatory foci, that is, at the surface of the right ventricle. Postmortem immunohistochemistry and flow cytometry confirmed the presence of perfluorocarbon in macrophages, dendritic cells, and granulocytes, but not in lymphocytes. The myocardial volume of elevated (19)F signal (rs=0.96; P<0.001), the (19)F signal-to-noise ratio (rs=0.92; P<0.001), and the (19)F signal integral (rs=0.96; P<0.001) at day 21 correlated with the histological myocarditis severity score.<br />Conclusions: In vivo (19)F-CMR was successfully used to visualize the inflammation specifically and robustly in experimental autoimmune myocarditis, and thus allowed for an unprecedented insight into the involvement of inflammatory cells in the disease process.
- Subjects :
- Animals
Autoimmune Diseases metabolism
Autoimmune Diseases pathology
Dendritic Cells immunology
Disease Models, Animal
Flow Cytometry
Granulocytes immunology
Immunohistochemistry
Injections, Intravenous
Lymphocytes immunology
Macrophages immunology
Male
Mice
Mice, Inbred BALB C
Myeloid Cells metabolism
Myeloid Cells pathology
Myocarditis metabolism
Myocarditis pathology
Myocardium metabolism
Myocardium pathology
Predictive Value of Tests
Severity of Illness Index
Signal-To-Noise Ratio
Autoimmune Diseases immunology
Fluorine administration & dosage
Fluorine pharmacokinetics
Fluorocarbons administration & dosage
Fluorocarbons pharmacokinetics
Magnetic Resonance Imaging
Myeloid Cells immunology
Myocarditis immunology
Myocardium immunology
Subjects
Details
- Language :
- English
- ISSN :
- 1942-0080
- Volume :
- 6
- Issue :
- 2
- Database :
- MEDLINE
- Journal :
- Circulation. Cardiovascular imaging
- Publication Type :
- Academic Journal
- Accession number :
- 23343515
- Full Text :
- https://doi.org/10.1161/CIRCIMAGING.112.000125