Back to Search
Start Over
Circadian acetylome reveals regulation of mitochondrial metabolic pathways.
- Source :
-
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2013 Feb 26; Vol. 110 (9), pp. 3339-44. Date of Electronic Publication: 2013 Jan 22. - Publication Year :
- 2013
-
Abstract
- The circadian clock is constituted by a complex molecular network that integrates a number of regulatory cues needed to maintain organismal homeostasis. To this effect, posttranslational modifications of clock proteins modulate circadian rhythms and are thought to convert physiological signals into changes in protein regulatory function. To explore reversible lysine acetylation that is dependent on the clock, we have characterized the circadian acetylome in WT and Clock-deficient (Clock(-/-)) mouse liver by quantitative mass spectrometry. Our analysis revealed that a number of mitochondrial proteins involved in metabolic pathways are heavily influenced by clock-driven acetylation. Pathways such as glycolysis/gluconeogenesis, citric acid cycle, amino acid metabolism, and fatty acid metabolism were found to be highly enriched hits. The significant number of metabolic pathways whose protein acetylation profile is altered in Clock(-/-) mice prompted us to link the acetylome to the circadian metabolome previously characterized in our laboratory. Changes in enzyme acetylation over the circadian cycle and the link to metabolite levels are discussed, revealing biological implications connecting the circadian clock to cellular metabolic state.
- Subjects :
- Acetylation
Animals
CLOCK Proteins deficiency
CLOCK Proteins metabolism
Cluster Analysis
Lysine metabolism
Male
Metabolome genetics
Mice
Mitochondria genetics
Peptides metabolism
Proteome metabolism
Transcriptome genetics
Circadian Rhythm genetics
Metabolic Networks and Pathways genetics
Mitochondria metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1091-6490
- Volume :
- 110
- Issue :
- 9
- Database :
- MEDLINE
- Journal :
- Proceedings of the National Academy of Sciences of the United States of America
- Publication Type :
- Academic Journal
- Accession number :
- 23341599
- Full Text :
- https://doi.org/10.1073/pnas.1217632110