Back to Search Start Over

Ameliorative potential of whey protein hydrolysate against paracetamol-induced oxidative stress.

Authors :
Athira S
Mann B
Sharma R
Kumar R
Source :
Journal of dairy science [J Dairy Sci] 2013 Mar; Vol. 96 (3), pp. 1431-7. Date of Electronic Publication: 2013 Jan 09.
Publication Year :
2013

Abstract

The aim of the present study was to validate the antioxidant effect of whey protein hydrolysate (WPH) using a small animal model. Paracetamol is common drug that is safe at therapeutic levels; however, an overdose causes oxidative stress, which may lead to potential hepatic and renal necrosis. The protective effect of WPH against paracetamol-induced hepato-nephrotoxicity in mice was investigated in this study. The WPH was prepared by hydrolyzing ultrafiltered retentate of mozzarella cheese whey with commercial food-grade alcalase; the resulting WPH had substantial in vitro antioxidant activity. Male albino mice were treated with WPH for 4 d [intraperitoneally at 4 mg/kg of body weight (BW) per day or orally at 8 mg/kg of BW per day] before or after oral administration of paracetamol (300 mg/kg of BW) for 2 d. Two control groups were used; the negative control mice were administered water only; the paracetamol group was administered paracetamol at 300 mg/kg of BW but received no WPH. Levels of different marker enzymes (glutamate pyruvate transaminase and alkaline phosphatase), creatinine, and blood urea nitrogen were measured in the experimental animal blood sera. The WPH successfully mitigated the increase in the concentration of oxidative biomarkers such as glutathione pyruvate transaminase, alkaline phosphatase, and creatinine, and restored the level of blood urea nitrogen to normal in sera of mice in which oxidative stress was induced with an overdose of paracetamol. Furthermore, the indices of different antioxidant enzymes, such as catalase, superoxide dismutase, and glutathione peroxidase, and lipid peroxidation end-products were determined in liver homogenate. The mice that were given WPH, either intraperitoneally or orally, showed increased activities of antioxidant enzymes and a reduction in thiobarbituric acid reactive substances (TBARS) compared with the paracetamol control group. The protective effect of WPH was less when administered orally than intraperitoneally. We concluded that WPH is the potential protector against paracetamol-induced hepato-nephrotoxicity and can be effectively used in health-promoting foods as a biofunctional ingredient.<br /> (Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1525-3198
Volume :
96
Issue :
3
Database :
MEDLINE
Journal :
Journal of dairy science
Publication Type :
Academic Journal
Accession number :
23313001
Full Text :
https://doi.org/10.3168/jds.2012-6080