Back to Search Start Over

Automated foveola localization in retinal 3D-OCT images using structural support vector machine prediction.

Authors :
Liu YY
Ishikawa H
Chen M
Wollstein G
Schuman JS
Rehg JM
Source :
Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention [Med Image Comput Comput Assist Interv] 2012; Vol. 15 (Pt 1), pp. 307-14.
Publication Year :
2012

Abstract

We develop an automated method to determine the foveola location in macular 3D-OCT images in either healthy or pathological conditions. Structural Support Vector Machine (S-SVM) is trained to directly predict the location of the foveola, such that the score at the ground truth position is higher than that at any other position by a margin scaling with the associated localization loss. This S-SVM formulation directly minimizes the empirical risk of localization error, and makes efficient use of all available training data. It deals with the localization problem in a more principled way compared to the conventional binary classifier learning that uses zero-one loss and random sampling of negative examples. A total of 170 scans were collected for the experiment. Our method localized 95.1% of testing scans within the anatomical area of the foveola. Our experimental results show that the proposed method can effectively identify the location of the foveola, facilitating diagnosis around this important landmark.

Details

Language :
English
Volume :
15
Issue :
Pt 1
Database :
MEDLINE
Journal :
Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
Publication Type :
Academic Journal
Accession number :
23285565
Full Text :
https://doi.org/10.1007/978-3-642-33415-3_38